
Pegasus5: An Automated Pre-Processor
For Overset-Grid CFD

Stuart E. Rogers

Computational Aerosciences Branch
NASA Supercomputing Division

NASA Ames Research Center, Moffett Field, CA
stuart.e.rogers@nasa.gov

13th Symposium on Overset Composite Grids
October 17th, 2016, Mukilteo, WA

Rogers 1 / 55

Acknowledgments

Pegasus5 primary authors:

Norman Suhs
William Dietz
Stuart Rogers

Developed with funding from:

NASA/Boeing/McDonnell-Douglas Advanced Subsonics
Transport Program
NASA Information Power-Grid Program
NASA Space Shuttle Program
NASA Orion/MPCV Program

Pegasus5 is co-winner of the 2016 NASA Software of the
Year Award

Rogers 2 / 55

Outline

Introduction and background

Understanding overset-grid work flow

Nomenclature

Pegasus5 features and automation

Overview of usage

Required input
Basic usage
Understanding the output
Advanced usage and overcoming problems

Rogers 3 / 55

The Oversetting Challenge

Rogers 4 / 55

The Oversetting Challenge

Rogers 4 / 55

Background

What is Computational Fluid Dynamics (CFD)?

Solving mathematical equations governing
fluid flow

Used extensively in all manner of
aerodynamic analysis

Why does the Aerospace Industry Need CFD?

Cost effective versus wind-tunnel

Simulate actual flight conditions

Run many simulations covering entire flight
envelope

In-depth investigation of single simulation

Rogers 5 / 55

Background: Structured and Unstructured Grids

What Are Structured Grids?

Ordered connection of blocks or cells

Requires less computer time and memory

Grid generation can be very difficult

What Are Unstructured Grids?

Randomly connected polyhedra

Much easier grid generation

Require 2x to 10x more computer time
and memory

Rogers 6 / 55

Background: Overflow CFD Flow Solver

What is Overflow?

NASA developed structured CFD solver

One of the most extensively used CFD
solvers in NASA

Used by every major NASA vehicle
program

Most users of Pegasus5 use the Overflow
solver

Rogers 7 / 55

Background: Overset Structured Grids

What are Overset Structured Grids?

Split complex geometry problems into
simple components

Enables highest quality grids in viscous
boundary layer

Requires software capable of integrating
the overlapping grids

An entire aircraft requires 100s of millions
of grid cells

Rogers 8 / 55

Overset-Grid Workflow For Overflow

Rogers 9 / 55

Nomenclature

Grid System: A collection of zones together with
boundary conditions and connectivity data ready to input
into a flow solver

Zone or Mesh: a single structured grid composed of
ordered points

Cell: a hexahedron composed of 8 grid points and 6 faces

Grid point: a singe point in a zone identified uniquely by
its j,k,l indices

Fringe point: a grid point which will be updated in the
flow solver via interpolation of the solution from a
neighboring zone

Outer-boundary fringe point: a fringe point on the
boundary edge of a zone

Hole-boundary fringe point: a fringe point adjacent to
a hole point

Rogers 10 / 55

Nomenclature, continued

Hole point: a grid point which has been “blanked out”
and whose data will not be used by the flow solver

Orphan point: a fringe point for which a valid donor cell
cannot be found

Interior point: a grid point which does not lie on the
zonal boundary

Iblank value: each grid point is assigned an integer value
to denote the type of point:

iblank<0: fringe point
iblank=0: hole point
iblank=1: active interior point
iblank=101: orphan point

Rogers 11 / 55

Pegasus5 Goals and Features

Fifth-generation overset software
Written in 1998-2000 as a replacement for PEGSUS4

Primary goal: automation of most of the oversetting
process

Complexity of CFD problems continues to grow
Hundreds of zones, hundreds of millions of grid points
Manual control of process is intractable

Requires all-new approach to:
Input requirements
Hole-cutting
Overlap optimization

Requires ease-of-use improvements:
Parallelization
Restarting
Projection

Maintained PEGSUS4 manual hole-cutting capabilities

Pegasus5 is dramatically easier to use than previous
versions, but still requires knowledgeable user

Rogers 12 / 55

Pegasus5 Approach

Use an Overflow-like namelist input file

Boundary conditions provide most of the required input
about geometry and grid topology

Use Fortran90

Extensive use of defined-type data and modules
Extensive use of process templates and data templates

Oversetting task broken into discrete processes

Input to each process saved as one or more disk files
Output from each process saved as one or more disk files
Facilitates parallelization
Enables restarts from partial or aborted runs
Enables rapid restarts after changes to input

Uses lots of CPU time and disk I/O

Rogers 13 / 55

Auto-Hole Cutting Using a Cartesian Map
2D Multi-Element Airfoil Example

Identify solid-wall surfaces and
overlay with Cartesian map

Fringe elements: Cartesian
elements which intersect walls

Outside elements: Identify
with painting algorithm

Inside elements: All other
elements

Rogers 14 / 55

Auto-Hole Cutting
Cutting of Candidate Points

Loop through all volume grid points

Points outside Cartesian map
marked as outside

Points in the Outside Elements
marked as outside

Points in the Inside Elements are
blanked

Points in the Fringe Elements use
line-of-sight test:

Point A has clear line-of-sight to
an Outside Element: outside point
Point B has clear line-of-sight to an
Inside Element: blank point

Rogers 15 / 55

Interpolation Stencil Search

Pegasus5 searches for all possible interpolation stencil
donors from all zones for every single grid point

Alternating Digital Tree (ADT) is created for all zones

For a given grid point and a given donor zone, an ADT
lookup provides a near-by cell, then a stencil-jumping
approach finds the exact donor cell and interpolation stencil

All possible donors cells are stored for every grid point

Rogers 16 / 55

Fringe Point Identification

A fringe point is one which requires updating in the
flow-solver via interpolation from a neighboring zone

Outer-boundary fringe points:

All points on the boundary of a zone that do not receive a
flow-solver boundary condition are identified as
outer-boundary fringe points

Hole-boundary fringe points:

Points adjacent to a hole point are identified as
hole-boundary fringe points

Single, double, or triple layers of fringe points can be
requested

Rogers 17 / 55

Level-1 Interpolation

For each fringe point, the best possible interpolation stencil
is chosen amongst all valid donor cells

When multiple donors are available, selection is based on a
measure of interpolation quality and relative cell size

Any fringe point which does not have a valid donor is
denoted as an orphan point

Rogers 18 / 55

Level-2 Interpolation

Optimization of overlap between zones

Interpolation points added after Level-1 interpolation

Has effect of expanding the automatically-cut holes and
shrinking the outer edges of overlapping zones

Finest grid points remain active interior points

Coarser grid points are interpolated from available donor
cells of finer neighboring zones

Methodology is robust, requires no user inputs, and
maximizes communication between overlapping zones

Rogers 19 / 55

Level-2 Interpolation
One-Dimensional Example

Rogers 20 / 55

Level-2 Interpolation
Step 1: Interpolate Between Meshes

Rogers 20 / 55

Level-2 Interpolation
Step 2: Remove Invalid Interpolations

Rogers 20 / 55

Level-2 Interpolation
Step 3: Repeat For Other Meshes

Rogers 20 / 55

Level-2 Interpolation
Step 4: Keep Finest Mesh Points

Rogers 20 / 55

Optimized Overlap Example: Multi-Element Airfoil
Level 1 Fringes

Rogers 21 / 55

Optimized Overlap Example: Multi-Element Airfoil
Level 2 Fringes

Rogers 21 / 55

Optimized Overlap Example: Multi-Element Airfoil
Virtual Fringes

Rogers 21 / 55

Optimized Overlap Example: Multi-Element Airfoil

Rogers 21 / 55

Projection

Corrects interpolation problems that may occur on
overlapping curved viscous surfaces

Cell-aspect ratio typically > 1000 near viscous walls

Pegasus5 projection step alters interpolation coefficients,
not actual grid points

Projection is performed internally and typically requires no
user input

Rogers 22 / 55

Problem:
Linear Discretization on Curved Surfaces

Rogers 23 / 55

Solution: Projection
Points are Projected for Interpolation Only

Rogers 24 / 55

Parallelization

Code is composed of many tasks

Projection, ADT, interpolation, hole-cutting, level-1
interpolation, level-2 interpolation, etc
Most tasks are independent of each other
Each task reads all input from disk files and writes all
results to disk files

Parallelization uses Message-Passing-Interface (MPI)

One master process to distribute and monitor the work
Many worker processes, one per CPU

Reliably reproduces results of the serial code

The larger the grid system, the better the parallel scaling

Rogers 25 / 55

Performance of Projection Algorithm
Space Launch System: 892 zones, 375 million points

Wallclock-time to
create overset, sec:

40 Cores: 544 sec

80 Cores: 349 sec

160 Cores: 285 sec

200 Cores: 277 sec

Rogers 26 / 55

Performance of Projection Algorithm
Space Launch System: 892 zones, 375 million points

Wallclock-time to
create overset, sec:

40 Cores: 544 sec

80 Cores: 349 sec

160 Cores: 285 sec

200 Cores: 277 sec

Rogers 26 / 55

Performance of Projection Algorithm
Space Launch System: 892 zones, 375 million points

Wallclock-time to
create overset, sec:

40 Cores: 544 sec

80 Cores: 349 sec

160 Cores: 285 sec

200 Cores: 277 sec

Rogers 26 / 55

Performance of Projection Algorithm
Space Launch System: 892 zones, 375 million points

Wallclock-time to
create overset, sec:

40 Cores: 544 sec

80 Cores: 349 sec

160 Cores: 285 sec

200 Cores: 277 sec

Asymptotic performance: 0.74 µsec per grid-pt

Asymptotic perf excluding I/O: 0.43 µsec per grid-pt

Rogers 26 / 55

Restarting

Pegasus5 execution consists of many individual tasks

Each task has a defined set of dependencies (inputs) that
are stored in disk files

Each task results in one or more output files

Automatically determines which tasks are out of date
based on internal time-stamps of input and output files

Internal time-stamps written as first and last record in each
disk file
An incomplete or inconsistent file is considered out of date

Upon execution Pegasus5 first checks all files and
determines which tasks need to be run

Can successfully restart for:
Modifications to user inputs or zones
Addition of new zones
Incomplete previous run or computer crash

Allows incremental buildup of complex configurations

Rogers 27 / 55

Pegasus5 Inputs

Required Inputs

Standard input file, namelist format

Volume grids in individual files: X DIR/name1.x,
X DIR/name2.x, ..., X DIR/nameN.x

Tools helpful in generating input:

peg setup script: converts Overflow input file and
multi-zone grid file

Chimera Grid Tools scripts: BuildPeg5i

Overgrid

Rogers 28 / 55

Pegasus5 Input File Example

$GLOBAL

FRINGE = 2, OFFSET = 1,

$END

$MESH NAME = "body",

KINCLUDE= 2, -2, LINCLUDE= 2, -1 OFFSET=2, $END

$MESH NAME = "bodynose",

JINCLUDE= 2, -1, LINCLUDE= 2, -1, $END

$MESH NAME = "wing", $END

$MESH NAME = "wingcap", $END

Rogers 29 / 55

Pegasus5 Input File Example, continued

$BCINP ISPARTOF = "body",

IBTYP = 5, 17, 17, 15,

IBDIR = 3, 2, -2, -1,

JBCS = 1, 1, 1, -1,

JBCE = -1, -1, -1, -1,

KBCS = 1, 1, -1, 1,

KBCE = -1, 1, -1, -1,

LBCS = 1, 1, 1, 1,

LBCE = 1, -1, -1, -1,

YSYM = 1,

$END

Rogers 30 / 55

Important Boundary Condition Types
See Pegasus5 manual for complete list

IBTYP = 1-4: inviscid walls

IBTYP = 5-8: viscous walls

IBTYP = -1: Dummy solid wall: used as a hole-cutting
wall and designated as an overset boundary

IBTYP = 10: O-grid periodic face (apply to one face)

IBTYP = 11-13: Symmetry in X, Y, Z with reflection plane

IBTYP = 17: Symmetry without reflection plane

IBTYP = 20: Point-wise block (cell-centered only)

IBTYP = 21: 2D in Y-direction (apply to one face)

IBTYP = 22: Axisymmetric in Y (apply to one face)

IBTYP = 51-53: C-grid flow-through (apply to one face)

IBTYP = not listed above: other boundary condition

All zonal boundaries not assigned an IBTYP are treated as
overset outer boundaries

Rogers 31 / 55

Pegasus5 Execution

Once you have the input file and the volume grids are
installed in the X DIR directory you can execute the code:

Serial version:

pegasus5 < peg.i

MPI Parallel version using N cpus:

mpiexec -np N pegasus5mpi < peg.i

<or>

mpiexec -np N pegasus5mpi -ifile peg.i

Note: mpi version requires that all CPUs have access to
the same copy of the working directory

Rogers 32 / 55

Pegasus5 Output

Pegasus5 creates WORK directory, contains all of the
intermediate output files created by Pegasus5

Typically no need to examine or read these files directly
In order to re-run a case from the beginning, simply remove
WORK

All informational output written to a file named
log.mmdd.hhmm, examine this file to see what Pegasus5
did

Note: the mpi version will create individual log files for
each process, named log.mmdd.hhmm.XXXX, these will be
concatenated together upon successful completion of the
run

The XINTOUT file contains all of the interpolation stencils
and blanking information used by the flow solver

Rogers 33 / 55

Post Execution Steps

Examine log file and verify successful completion

Use peg plot with option 3 to create composite grid file

Examine minimum hole cuts and make sure no active
points are left inside a solid body

Plot hole boundaries in plot3d, function 2
Plot grid slices in overgrid, tecplot, fieldview, etc
Plot orphan points in plot3d, overgrid, tecplot, etc
Look for orphan points left inside a solid body

Examine and eliminate cause of orphan points

Rogers 34 / 55

End of log file: Stencils and Orphans

| | | |

Mesh Name |Interpolated |Interpolation |Orphan Points |

|Boundary Points|Stencil | |

| | | |

| | | |

fuselage |Level 1: 10634|Level 1: 32934|1st Fringe: 0 |

|Level 2: 24578|Level 2: 10498|2nd Fringe: 0(Fixed)|

|Total: 35212|Total: 43432|Total: 0 |

| | | |

| | | |

wing |Level 1: 38609|Level 1: 30486|1st Fringe: 2 |

|Level 2: 49279|Level 2: 12261|2nd Fringe: 0(Fixed)|

|Total: 87888|Total: 42747|Total: 2 |

| | | |

| | | |

wingcap |Level 1: 20251|Level 1: 12491|1st Fringe: 0 |

|Level 2: 242|Level 2: 22748|2nd Fringe: 0(Fixed)|

|Total: 20493|Total: 35239|Total: 0 |

| | | |

| | | |

Grand Total |Level 1: 262641|Level 1: 262641|1st Fringe: 14 |

|Level 2: 267467|Level 2: 267467|2nd Fringe: 0 |

|Total: 530108|Total: 530108|Total: 14 |

| | | |

Rogers 35 / 55

End of log file: Execution Time

PROCESS CPU(sec) WALL(sec) Sub-procs Max sub-proc(sec)

projection 13.875 2.328 122 1.672

adt 4.656 1.266 13 0.906

interpolate 65.922 24.586 122 3.867

auto_hbound 66.438 26.898 3 26.906

man_hbound 0.000 0.000 0 0.000

auto_cut 42.234 4.906 30 4.805

man_cut 0.000 0.000 0 0.000

comp_hole 1.156 0.141 13 0.125

spec_int1 0.508 0.055 13 0.062

spec_level1 8.078 0.859 13 0.867

level1fix 1.734 2.305 1 1.734

spec_int2 19.859 2.195 61 0.930

spec_level2 9.859 1.023 13 1.016

xintout 1.469 1.477 1 1.469

SUM of PROCESS TIME for all processes (secs): 235.789

ELASPSED WALL TIME(secs): 37.703

EXECUTION SPEED-UP = 6.25 using 15 processors.

Rogers 36 / 55

Output: peg plot

Grid file: use the peg plot program to create the grid file
used by the flow solver, and to plot and check the results of
the Pegasus5 run

Use peg plot option 3 first to examine the results of the hole
cutting
The peg plot option 2 (or option 1) to blank out the
higher-level fringes in the resulting grid file
This illustrates the borders of where information is passed
between overlapping zones
Useful when plotting the flow solution as it minimizes the
overlap

Note: Overflow does not use the iblank array in the grid
file, so any peg plot option works when creating the grid
file that will be passed to Overflow

Rogers 37 / 55

Example: peg plot Option 3

Wing-body example using peg plot
option 3

View the fuselage zone in overgrid

Shows auto hole cut by the wing

Fringe points shown with colored
symbols

Rogers 38 / 55

Example: peg plot Option 2

Wing-body example using peg plot option 2

Higher-level fringe points have been blanked out

Shows the virtual overlap after the Level-2
interpolation

Flow-solver still keeps the higher-level fringes
active: they can be used as donor cells for other
zones

Rogers 39 / 55

Examining the Hole Cuts

Use plot3d function 2:
plots the outlines of the
holes

Use Overgrid, etc: plot
slices through grids

Search log file for
“composite hole”: lists
number blanked points
in each mesh

Use peg hole surf to
extract grid surfaces
used by each $HCUT
hole cutter

Rogers 40 / 55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

Rogers 41 / 55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

Rogers 41 / 55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

Rogers 41 / 55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

Rogers 41 / 55

Version 5.2: Auto Domain Decomposition
CUTTER CONTROL Namelist

AUTOHCT > 1:
Automatically domain
splitting

Optional:

Use
XCUTS,YCUTS,ZCUTS to
exclude splitting in X, Y, Z
directions
Use
CUTPLDIR,CUTPLVAL to
further control splitting
procedure

$CUTTER_CONTROL

AUTOHCT = 8,

CNX = 512,

CNY = 512,

CNZ = 512,

XCUTS = .TRUE.,

YCUTS = .TRUE.,

ZCUTS = .TRUE.,

CUTPLDIR = $<list-of-cut-plane-directions>$,

CUTPLVAL = $<list-of-cut-plane-values>$,

$END

Rogers 42 / 55

Custom Hole Cutting

The $HCUT namelists are
used to define separate
hole-cutters

Without any $HCUT
namelists in input file,
pegasus5 uses ALL solid-wall
surfaces to cut holes from ALL
zones

Adding an $HCUT entry
eliminates this default
hole-cutter

Adding multiple $HCUT
entries increases resolution and
parallel efficiency

$HCUT NAME = "hcutter1",

MEMBER = "body1",

"body2",

INCLUDE = "bodynose",

"wing",

"wingcol",

CNX = 512,

CNY = 512,

CNZ = 512,

CARTX = -100.0, 100.0,

CARTY = -50.0, 50.0,

CARTZ = 0.0, 100.0,

$END

Rogers 43 / 55

Custom Hole Cutting

$HCUT NAME = "winghole",

MEMBER = "wing",

"wingcol",

"wingcap",

"body",

INCLUDE = "body",

"wingbox",

"bodybox",

"farbox",

CARTX = 100.0, 400.0,

CARTY = 10.0, 150.0,

$END

Rogers 44 / 55

Custom Hole Cutting

$HCUT NAME = "winghole1",

MEMBER = "wing", "wingcol", "body",

INCLUDE = "body", "wingbox",

"bodybox", "farbox",

CARTX = 100.0, 250.0,

CARTY = 10.0, 51.0,

$END

$HCUT NAME = "winghole2",

MEMBER = "wing",

INCLUDE = "wingbox", "farbox",

CARTX = 200.0, 350.0,

CARTY = 50.0, 101.0,

$END

$HCUT NAME = "winghole3",

MEMBER = "wing", "wingcap",

INCLUDE = "wingbox", "farbox",

CARTX = 240.0, 400.0,

CARTY = 100.0, 150.0,

$END

Rogers 45 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHole1",

MEMBER = "body", "bump",

INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,

OCORNER = 00001111,

HOFFSET = 1,

$END

Rogers 46 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHole1",

MEMBER = "body", "bump",

INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,

OCORNER = 00001111,

HOFFSET = 1,

$END

Rogers 46 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHole1",

MEMBER = "body", "bump",

INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,

OCORNER = 00001111,

HOFFSET = 1,

$END

Rogers 46 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHole1",

MEMBER = "body", "bump",

INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,

OCORNER = 00001111,

HOFFSET = 1,

$END

Rogers 46 / 55

Hole-Cutting Troubleshooting

No holes cut due to leaks or gaps in solid-wall surfaces

Use CARTX,CARTY,CARTZ to seal gap

Use PHANTOM zone to seal gap

Edit input file and extend solid-wall boundary

Holes too small near thin bodies, such as TE of a thin wing

Increase OFFSET or HOFFSET to enlarge holes

Increase CNX, CNY, CNZ to improve resolution

Hole points not cut properly near collar grids

Increase OFFSET or HOFFSET to enlarge holes

Holes cut in solid walls in regions of high curvature

Increase grid resolution

Use $REGION and $VOLUME namelists to unblank holes

Rogers 47 / 55

Manual Hole Cutting
Manual hole-cutting from pegsus4 retained in Pegasus5

$BOUNDARY/$SURFACE namelists

Can specify a group of zonal surfaces which will cut holes in the
specified zones

$BOUNDARY/$BOX namelists

Can specify a range of x,y,z coordinates of a box which will cut
holes in the specified zones

$REGION/$VOLUME namelists

Can specify a range of j,k,l zonal indices to create a hole, or to
unblank part of an existing hole

Rogers 48 / 55

Orphan Points

Orphan points are fringe points for which no valid
interpolation donor can be found

2nd- and 3rd-layer fringe-point orphans are reset to active
interior points by default

Overflow will update the solution data at orphan points by
averaging the neighboring grid points

A few isolated orphan points are usually acceptable, but it
is advisable to find and fix most or all orphans
Orphans on solid-wall surfaces usually indicate a serious
problem with surface resolution or projection, and should
be fixed

Rogers 49 / 55

Identifying Orphan Points

Orphans are reported in the log file, in the output of
peg plot and using the peg orph program

Use the peg plot program to create a grid file with iblank

Can plot orphans using several programs:

plot3d: Plot using function 3
overgrid: Grid Diagnostics module
tecplot: Use contours or scatter plots

Rogers 50 / 55

Causes of Orphans

Bad hole cuts

Insufficient overlap

Poorly resolved geometry in regions of surface curvature

Inappropriate or missing boundary conditions

Rogers 51 / 55

Insufficient Overlap

Increase surface-grid overlap

Add more splaying to
volume-grid generation

Add a Cartesian box to cover
the open space

Grow outer boundaries further

Add more grid points

Rogers 52 / 55

Utility Codes

peg setup: creates input file and grid files

peg hole surf: created plot3d grid files containing
solid-wall surfaces used in automatic hole cutting

peg plot: creates composite plot3d grid file with iblank

peg plot center: creates composite plot3d grid file with
iblank for cell-centered grids

peg diag: produces diagnostic file for plotting
interpolation parameters and connection information

peg orph: lists orphan points for each zone

peg proj: creates diagnostic plot3d files to plot maximum
surface projections

XINtegrity: Runs tests and verifies integrity of the
XINTOUT file

Rogers 53 / 55

New Utility Codes Available in Version 5.2

dcintegrity: Runs tests and verifies integrity of the dci file

hcut info: Prints data about each HCUT hole cutter

hcut plot: Creates plotting files used to examine HCUT
hole cutters

peg5 plotcpu.pl Creates plot of CPU usage for each
processor for an pegasus5mpi run

Rogers 54 / 55

Summary

Pegasus5 successfully automates most of the oversetting
process

Dramatic reduction in the user input over previous
generations of overset software
Reduced complex-geometry oversetting time from weeks to
hours
Significant reduction in user-expertise requirements

Not a “black-box” procedure: care must be taken to
examine the resulting grid system

NASA Software catalog page for Pegasus5:

https://software.nasa.gov/software/ARC-15117-1A

Rogers 55 / 55

https://software.nasa.gov/software/ARC-15117-1A

