Pegasusb: An Automated Pre-Processor
For Overset-Grid CFD

Stuart E. Rogers

Computational Aerosciences Branch
NASA Supercomputing Division
NASA Ames Research Center, Moffett Field, CA
stuart.e.rogers@nasa.gov

13th Symposium on Overset Composite Grids
October 17th, 2016, Mukilteo, WA

Rogers 1/55

Acknowledgments

* Pegasusb primary authors:

« Norman Suhs
« William Dietz
« Stuart Rogers

* Developed with funding from:
« NASA /Boeing/McDonnell-Douglas Advanced Subsonics
Transport Program
e NASA Information Power-Grid Program
« NASA Space Shuttle Program
« NASA Orion/MPCV Program

e Pegasusb is co-winner of the 2016 NASA Software of the
Year Award

Rogers 2/55

Outline

Introduction and background

Understanding overset-grid work flow

Nomenclature

Pegasusb features and automation

Overview of usage

Required input

Basic usage

Understanding the output

Advanced usage and overcoming problems

Rogers

The Oversetting Challenge

Rogers 4/55

The Oversetting Challenge

Rogers 4/55

Background

What is Computational Fluid Dynamics (CFD)?

* Solving mathematical equations governing
fluid flow

o Used extensively in all manner of
aerodynamic analysis

Why does the Aerospace Industry Need CFD?
e Cost effective versus wind-tunnel

e Simulate actual flight conditions

e Run many simulations covering entire flight
envelope

o In-depth investigation of single simulation

Rogers 5/55

Background: Structured and Unstructured Grids

What Are Structured Grids?
e Ordered connection of blocks or cells

* Requires less computer time and memory

e Grid generation can be very difficult

What Are Unstructured Grids?
» Randomly connected polyhedra

® Much easier grid generation

* Require 2x to 10x more computer time
and memory

Rogers 6 /55

Background: Overflow CFD Flow Solver

What is Overflow?

o NASA developed structured CFD solver

® One of the most extensively used CFD
solvers in NASA

e Used by every major NASA vehicle
program

e Most users of Pegasusb use the Overflow
solver

o T—

N‘MﬁmMHHHHHHMEEMMHMHMMMMMMHEMMMMMM

Rogers 7/55

Background: Overset Structured Grids

¥

.
“‘f "\
"k s
What are Overset Structured Grids? Cf\\

Leading Edge
Slat

» Split complex geometry problems into
simple components

e Enables highest quality grids in viscous
boundary layer

» Requires software capable of integrating
the overlapping grids

e An entire aircraft requires 100s of millions
of grid cells

Rogers 8/55

Overset-Grid Workflow For Overflow

‘Overgrid, . »/ Surface \ Hypgen,
Surgrd, etc Grids Boxgr, etc

pE

Surface:

grid.in, < m Volume
XINTOUT / Pegasuss Grids

‘ Overflow-D

Rogers 9/55

Nomenclature

e Grid System: A collection of zones together with
boundary conditions and connectivity data ready to input
into a flow solver

e Zone or Mesh: a single structured grid composed of
ordered points

e Cell: a hexahedron composed of 8 grid points and 6 faces

e Grid point: a singe point in a zone identified uniquely by
its j,k,l indices

e Fringe point: a grid point which will be updated in the
flow solver via interpolation of the solution from a
neighboring zone

e Outer-boundary fringe point: a fringe point on the
boundary edge of a zone

¢ Hole-boundary fringe point: a fringe point adjacent to
a hole point

Rogers 10 /55

Nomenclature, continued

» Hole point: a grid point which has been “blanked out”
and whose data will not be used by the flow solver

¢ Orphan point: a fringe point for which a valid donor cell
cannot be found

e Interior point: a grid point which does not lie on the
zonal boundary
e Iblank value: each grid point is assigned an integer value
to denote the type of point:
« iblank<0: fringe point
« iblank=0: hole point
« iblank=1: active interior point
« iblank=101: orphan point

Rogers 11 /55

Pegasusb Goals and Features

» Fifth-generation overset software
« Written in 1998-2000 as a replacement for PEGSUS/,
e Primary goal: automation of most of the oversetting
process
« Complexity of CFD problems continues to grow
« Hundreds of zones, hundreds of millions of grid points
e Manual control of process is intractable
* Requires all-new approach to:
« Input requirements
« Hole-cutting
e Overlap optimization
* Requires ease-of-use improvements:
« Parallelization
» Restarting
« Projection
e Maintained PEGSUS/ manual hole-cutting capabilities
» Pegasusb is dramatically easier to use than previous
versions, but still requires knowledgeable user

Rogers

12/55

Pegasusb Approach

Use an Overflow-like namelist input file

« Boundary conditions provide most of the required input
about geometry and grid topology
Use Fortran90

« Extensive use of defined-type data and modules
« Extensive use of process templates and data templates

» Oversetting task broken into discrete processes
« Input to each process saved as one or more disk files
« Output from each process saved as one or more disk files
« Facilitates parallelization
« Enables restarts from partial or aborted runs
« Enables rapid restarts after changes to input

Uses lots of CPU time and disk I/O

Rogers 13 /55

Auto-Hole Cutting Using a Cartesian Map

2D Multi-Element Airfoil Example

(Q\

o Identify solid-wall surfaces and
overlay with Cartesian map

* Fringe elements: Cartesian
elements which intersect walls

e Outside elements: Identify
with painting algorithm

e Inside elements: All other
elements

Rogers 14 /55

Auto-Hole Cutting

Cutting of Candidate Points

e Loop through all volume grid points

Outside Element Outside Element Fringe Element

» Points outside Cartesian map
marked as outside

e Points in the Outside Elements
marked as Outside Fringe Element Fringe Element Fringe Element

e Points in the Inside Elements are
blanked

» Points in the Fringe Elements use
line-of-sight test:

« Point A has clear line-of-sight to
an Outside Element: outside point
« Point B has clear line-of-sight to an

Inside Element: blank point

Rogers 15 /55

Interpolation Stencil Search

» Pegasusb searches for all possible interpolation stencil
donors from all zones for every single grid point

» Alternating Digital Tree (ADT) is created for all zones
e For a given grid point and a given donor zone, an ADT
lookup provides a near-by cell, then a stencil-jumping

approach finds the exact donor cell and interpolation stencil

o All possible donors cells are stored for every grid point

Rogers 16 /55

Fringe Point Identification

A fringe point is one which requires updating in the
flow-solver via interpolation from a neighboring zone

Outer-boundary fringe points:
« All points on the boundary of a zone that do not receive a
flow-solver boundary condition are identified as
outer-boundary fringe points

Hole-boundary fringe points:

« Points adjacent to a hole point are identified as
hole-boundary fringe points

Single, double, or triple layers of fringe points can be
requested

Rogers

17 /55

Level-1 Interpolation

» For each fringe point, the best possible interpolation stencil
is chosen amongst all valid donor cells

e When multiple donors are available, selection is based on a
measure of interpolation quality and relative cell size

e Any fringe point which does not have a valid donor is
denoted as an orphan point

Rogers 18 /55

Level-2 Interpolation

e Optimization of overlap between zones
¢ Interpolation points added after Level-1 interpolation

» Has effect of expanding the automatically-cut holes and
shrinking the outer edges of overlapping zones

* Finest grid points remain active interior points

e Coarser grid points are interpolated from available donor
cells of finer neighboring zones

* Methodology is robust, requires no user inputs, and
maximizes communication between overlapping zones

Rogers 19/55

Level-2 Interpolation

One-Dimensional Example

Mesh A

—A A A A A A 04 A

Mesh B

S S S S S |

Mesh C

T T S

Rogers 20 /55

Level-2 Interpolation

Step 1: Interpolate Between Meshes

Mesh A

—— A A5

e 4 b b8 |]

———¢——+—90 90—

T Arrow denotes direction of information flow

Rogers 20 /55

Level-2 Interpolation

Step 2: Remove Invalid Interpolations

Mesh A

—A—A A A A A 4 A

rl 4 |

—0—0—0—¢—¢ 0 o

Rogers 20 /55

Level-2 Interpolation
Step 3: Repeat For Other Meshes

Mesh A
—_—

Mesh C l

% ———p—

Mesh B
——— —®— 8 — 06— — 0

Mesh C l

.

Rogers 20 /55

Level-2 Interpolation
Step 4: Keep Finest Mesh Points

Mesh A

Mesh B l l

Mesh C l l

K T T S S

S Field Points

Rogers 20/55

Optimized Overlap Example: Multi-Element Airfoil

Level 1 Fringes

o
s g
["
e
e o
°
e
3
® ®
o o
¢ o
o o
. ®
.
.
* o
L
o e
o

21/55

Rogers

Optimized Overlap Example: Multi-Element Airfoil

Level 2 Fringes

21/55

Optimized Overlap Example: Multi-Element Airfoil

Virtual Fringes

Rogers 21 /55

Optimized Overlap Example: Multi-Element Airfoil

21/55

Projection

» Corrects interpolation problems that may occur on
overlapping curved viscous surfaces

e Cell-aspect ratio typically > 1000 near viscous walls

» Pegasusb projection step alters interpolation coefficients,
not actual grid points

e Projection is performed internally and typically requires no
user input

Rogers 22 /55

Problem:

Linear Discretization on Curved Surfaces

Concave Surface

Convex Surface

Rogers 23 /55

Solution: Projection

Points are Projected for Interpolation Only

Recipient Mesh ===~ Donor Mesh Donor Mesh

Rogers 24 /55

Parallelization

e Code is composed of many tasks
e Projection, ADT, interpolation, hole-cutting, level-1
interpolation, level-2 interpolation, etc
« Most tasks are independent of each other
« Each task reads all input from disk files and writes all
results to disk files
» Parallelization uses Message-Passing-Interface (MPI)
« One master process to distribute and monitor the work
e Many worker processes, one per CPU
» Reliably reproduces results of the serial code
e The larger the grid system, the better the parallel scaling

Rogers 25 /55

Performance of Projection Algorithm

Space Launch System: 892 zones, 375 million points

» Wallclock-time to
create overset, sec:

e 40 Cores: 544 sec

@
2
E
S
=
=}
o
o

300
Time, sec

Rogers

[_1 Projection
[ADT
Il Interpolation
[Auto Prep
I Auto Holecut
[Comp Hole
[L1 Fringes
I L1 Stencils
L1 Fix
Il L2 Fringes
[L2 Stencils
[Final Output

26 /55

Performance of Projection Algorithm

Space Launch System: 892 zones, 375 million points

[_1 Projection
Bl ADT

° Il Interpolation
» Wallclock-time to S —
[Comp Hole

create overset, sec: = [L1 Fringes
I L1 Stencils

B L1 Fi

e 40 Cores: 544 sec i

Il L2 Fringes
e 80 Cores: 349 sec

[L2 Stencils
[Final Output

@
2
E
S
=
=}
o
o

Time, sec

Rogers

26 /55

Performance of Projection Algorithm

Space Launch System: 892 zones, 375 million points

Wallclock-time to

L
Comp Hole
Cl"eate OVerset, SEC: 5 H ;:\nge_‘s
Qo lencils
5 L1Fi
e 40 Cores: 544 sec 2 L2 Fringes
G e
inal utpus
e 80 Cores: 349 sec s
e 160 Cores: 285 sec

Time, sec

Rogers 26 /55

Performance of Projection Algorithm

Space Launch System: 892 zones, 375 million points

[_1 Projection
Bl ADT
[l [nterpolation
» Wallclock-time to :| e Ea — g
[Comp Hole
create overset, sec: 5 [L1 Fringes
2 = Ilj ?tenci\s
S ix
L 40 COreS: 544 Sec % Il L2 Fringes
o [L2 Stencils
© Final Output
e 80 Cores: 349 sec — oo
e 160 Cores: 285 sec
e 200 Cores: 277 sec

150
Time, sec

Asymptotic performance: 0.74 usec per grid-pt
Asymptotic perf excluding I/O: 0.43 psec per grid-pt

Rogers 26 /55

Restarting

» Pegasusb execution consists of many individual tasks

» Each task has a defined set of dependencies (inputs) that
are stored in disk files

» Each task results in one or more output files

» Automatically determines which tasks are out of date
based on internal time-stamps of input and output files
« Internal time-stamps written as first and last record in each
disk file
« An incomplete or inconsistent file is considered out of date
» Upon execution Pegasusb first checks all files and
determines which tasks need to be run
o Can successfully restart for:
« Modifications to user inputs or zones
« Addition of new zones
« Incomplete previous run or computer crash

e Allows incremental buildup of complex configurations

Rogers 27 /55

Pegasusd Inputs

Required Inputs
» Standard input file, namelist format

» Volume grids in individual files: X_DIR/namel.x,
X_DIR/name2.x, ..., X_DIR /nameN.x

Tools helpful in generating input:

* peg_setup script: converts Overflow input file and
multi-zone grid file

e Chimera Grid Tools scripts: BuildPegbi
e Overgrid

Rogers

28 /55

Pegasusd Input File Example

$GLOBAL
FRINGE = 2, OFFSET = 1,
$END

$MESH NAME = "body",
KINCLUDE= 2, -2, LINCLUDE= 2, -1 OFFSET=2, $END

$MESH NAME = "bodynose",
JINCLUDE= 2, -1, LINCLUDE= 2, -1, $END

$MESH NAME

"wing", $END

$MESH NAME

"wingcap", $END

Rogers 29 /55

Pegasusb Input File Example, continued

$BCINP ISPARTOF = "body",

IBTYP = 5, 17, 17, 15,
IBDIR = 3, 2, -2, -1,
JBCS = 1, 1, 1, -1,
JBCE = -1, -1, -1, -1,
KBCS = 1, 1, -1, 1,
KBCE = -1, 1, -1, -1,
LBCS = 1, 1, 1, 1,
LBCE = 1, -1, -1, -1,
YSYM =1,

$END

Rogers 30/55

Important Boundary Condition Types

See Pegasusb manual for complete list

e IBTYP = 1-4: inviscid walls

e IBTYP = 5-8: viscous walls

e IBTYP = -1: Dummy solid wall: used as a hole-cutting
wall and designated as an overset boundary

* IBTYP = 10: O-grid periodic face (apply to one face)

e IBTYP = 11-13: Symmetry in X, Y, Z with reflection plane

e IBTYP = 17: Symmetry without reflection plane

* IBTYP = 20: Point-wise block (cell-centered only)

e IBTYP = 21: 2D in Y-direction (apply to one face)

¢ IBTYP = 22: Axisymmetric in Y (apply to one face)

e IBTYP = 51-53: C-grid flow-through (apply to one face)

e IBTYP = not listed above: other boundary condition

e All zonal boundaries not assigned an IBTYP are treated as
overset outer boundaries

Rogers 31/55

Pegasusb Execution

Once you have the input file and the volume grids are
installed in the X_DIR directory you can execute the code:

Serial version:

pegasusb < peg.i

MPI Parallel version using N cpus:

mpiexec -np N pegasusbmpi < peg.i
<or>
mpiexec -np N pegasusbmpi -ifile peg.i

Note: mpi version requires that all CPUs have access to
the same copy of the working directory

Rogers 32/55

Pegasusb Output

Pegasusb creates WORK directory, contains all of the
intermediate output files created by Pegasusb

« Typically no need to examine or read these files directly
e In order to re-run a case from the beginning, simply remove

WORK

e All informational output written to a file named
log.mmdd.hhmm, examine this file to see what Pegasusb
did

» Note: the mpi version will create individual log files for
each process, named log.mmdd.hhmm.XXXX, these will be
concatenated together upon successful completion of the
run

e The XINTOUT file contains all of the interpolation stencils
and blanking information used by the flow solver

Rogers 33/55

Post Execution Steps

Examine log file and verify successful completion

» Use peg_plot with option 3 to create composite grid file

Examine minimum hole cuts and make sure no active
points are left inside a solid body

« Plot hole boundaries in plot3d, function 2

« Plot grid slices in overgrid, tecplot, fieldview, etc
« Plot orphan points in plot3d, overgrid, tecplot, etc
« Look for orphan points left inside a solid body

* Examine and eliminate cause of orphan points

Rogers

34/55

End of log file: Stencils and Orphans

| | | |

Mesh Name |Interpolated |Interpolation |Orphan Points |
|Boundary Points|Stencil | |

|

|

fuselage |Level 1: 10634|Level 1: 32934|1st Fringe: 0 |
|Level 2: 24578|Level 2: 10498|2nd Fringe: 0(Fixed)

|Total: 35212|Total: 43432|Total: 0 |

| | | |

| | | |

wing |Level 1: 38609|Level 1: 30486|1st Fringe: 2 |

|Level 2: 49279|Level 2: 12261|2nd Fringe: 0(Fixed) |

|Total: 87888|Total: 42747 | Total: 2 |

| | | |

| | | |

wingcap |Level 1: 20251|Level 1: 12491|1st Fringe: 0 |
|Level 2: 242|Level 2: 22748|2nd Fringe: 0(Fixed)

| Total: 20493 | Total: 36239 | Total: 0 |

| | | |

| | | |

Grand Total |Level 1: 262641|Level 1: 262641|1st Fringe: 14 |

|Level 2: 267467|Level 2: 267467|2nd Fringe: 0 |

|Total: 530108|Total: 530108|Total: 14 |

|

Rogers

End of log file: Execution Time

PROCESS CPU(sec) WALL(sec) Sub-procs Max sub-proc(sec)
projection 13.875 2.328 122 1.672
adt 4.656 1.266 13 0.906
interpolate 65.922 24.586 122 3.867
auto_hbound 66.438 26.898 3 26.906
man_hbound 0.000 0.000 0 0.000
auto_cut 42.234 4.906 30 4.805
man_cut 0.000 0.000 0 0.000
comp_hole 1.156 0.141 13 0.125
spec_int1l 0.508 0.055 13 0.062
spec_levell 8.078 0.859 13 0.867
levellfix 1.734 2.305 1 1.734
spec_int2 19.859 2.195 61 0.930
spec_level2 9.859 1.023 13 1.016
xintout 1.469 1.477 1 1.469

SUM of PROCESS TIME for all processes (secs): 235.789

ELASPSED WALL TIME(secs): 37.703

EXECUTION SPEED-UP = 6.25 using 15 processors.

Rogers 36 /55

Output: peg_plot

o Grid file: use the peg_plot program to create the grid file
used by the flow solver, and to plot and check the results of
the Pegasusb run

« Use peg_plot option 3 first to examine the results of the hole
cutting

» The peg_plot option 2 (or option 1) to blank out the
higher-level fringes in the resulting grid file

e This illustrates the borders of where information is passed
between overlapping zones

« Useful when plotting the flow solution as it minimizes the
overlap

» Note: Overflow does not use the iblank array in the grid
file, so any peg_plot option works when creating the grid
file that will be passed to Overflow

Rogers 37/55

ample: peg_plot Option 3

/ing-body example using peg_plot
option 3
View the fuselage zone in overgrid
Shows auto hole cut by the wing

Fringe points shown with colored
symbols

Example: peg_plot Option 2

* Wing-body example using peg_plot option 2
e Higher-level fringe points have been blanked out

e Shows the virtual overlap after the Level-2
interpolation

o Flow-solver still keeps the higher-level fringes
active: they can be used as donor cells for other
zones

Rogers 39/55

Examining the Hole Cuts

e Use plot3d function 2:
plots the outlines of the
holes

» Use Overgrid, etc: plot
slices through grids

e Search log file for
“composite hole”: lists
number blanked points
in each mesh

e Use peg_hole_surf to
extract grid surfaces
used by each $SHCUT

hole cutter

Rogers 40 /55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

Rogers 41 /55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

Rogers 41 /55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

4 Hole Cutters

Rogers 41/55

Version 5.2: Auto Domain Decomposition
Automatic Creation of HCUT Hole-Cutters To Fit The Geometry

8 Hole Cutters

Rogers 41/55

Version 5.2: Auto Domain Decomposition
CUTTER_CONTROL Namelist

» AUTOHCT > 1:

. . $CUTTER_CONTROL
Automatically domain

e AUTOHCT = 8,
splitting CNX = 512
» Optional: CNY = 5192
* Use CNZ = 512,

XCUTS,YCUTS,ZCUTS to

exclude splitting in X, Y, Z XCUTS = .TRUE.,

YCUTS = .TRUE.

directions

. Use ZCUTS = .TRUE.
CUTPLDIR,CUTPLVAL to CUTPLDIR = $<llst-0f-cut-pl
further control splitting CUTPLVAL = $<list-of-cut-pl

procedure $END

Rogers 42 /55

Custom Hole Cutting

e The SHCUT namelists are

used to define separate $HCUT NAME = "hcutterl",
hole-cutters MEMBER = "bodyl",

e Without any $SHCUT "body2",
namelists in input file, INCLUDE = "bodynose",
pegasush uses ALL solid-wall "wing",
surfaces to cut holes from ALL "wingcol",
zones CNX = 512,

e Adding an SHCUT entry LN = B2,
eliminates this default CNZ = 512,
o

. Add‘mg'mulmple $HCUT CARTZ = 0.0, 100.0,
entries increases resolution and $END

parallel efficiency

Rogers 43 /55

Custom Hole Cutting

$HCUT NAME = "winghole",

MEMBER = "wing",
"wingcol",
"wingcap",
"body",

INCLUDE = "body",
"wingbox",
"bodybox",
"farbox",

CARTX = 100.0, 400.0,

CARTY = 10.0, 150.0,

$END

Rogers 44 /55

Custom Hole Cutting

$HCUT NAME = "wingholel",
MEMBER = "wing", "wingcol", "body",
INCLUDE = "body", "wingbox",
"bodybox", "farbox",
100.0, 250.0,
10.0, 51.0,

CARTX

CARTY

$END
$HCUT NAME = "winghole2",

MEMBER = "wing",

INCLUDE = "wingbox", "farbox",

CARTX = 200.0, 350.0,

CARTY = 50.0, 101.0,

$END
$HCUT NAME = "winghole3",
MEMBER = "wing", "wingcap",

INCLUDE = "wingbox", "farbox",
CARTX = 240.0, 400.0,

CARTY = 100.0, 150.0,

$END

Rogers 45 /55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHolel",

MEMBER = "body", "bump",
INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,
OCORNER = 00001111,
HOFFSET = 1,

$END

Rogers 46 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHolel", o g
MEMBER = "body", "bump", 4
INCLUDE = "body", >
CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0, e
CARTZ = 0.0, 1.0, % °o°
OCORNER = 00001111, o'e0®
HOFFSET = 1,

$END

Rogers 46 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHolel",

MEMBER = "body", "bump",
INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,

OCORNER = 00001111,
HOFFSET = 1,

$END

Rogers 46 / 55

Version 5.2b: Protuberance HCUT

$HCUT NAME = "NewHolel",

MEMBER = "body", "bump",
INCLUDE = "body",

CARTX = 0.0, 1.0,

CARTY = 0.0, 1.0,

CARTZ = 0.0, 1.0,

OCORNER = 00001111,
HOFFSET = 1,

$END

Rogers 46 / 55

Hole-Cutting Troubleshooting

No holes cut due to leaks or gaps in solid-wall surfaces
e Use CARTX,CARTY,CARTZ to seal gap
e Use PHANTOM zone to seal gap

e Edit input file and extend solid-wall boundary

Holes too small near thin bodies, such as TE of a thin wing
e Increase OFFSET or HOFFSET to enlarge holes

e Increase CNX, CNY, CNZ to improve resolution

Hole points not cut properly near collar grids
e Increase OFFSET or HOFFSET to enlarge holes

Holes cut in solid walls in regions of high curvature
Increase grid resolution

e Use $REGION and $VOLUME namelists to unblank holes

Rogers 47 /55

Manual Hole Cutting

Manual hole-cutting from pegsus4 retained in Pegasusb

$BOUNDARY /$SURFACE namelists

Can specify a group of zonal surfaces which will cut holes in the
specified zones

$BOUNDARY /$BOX namelists

Can specify a range of x,y,z coordinates of a box which will cut
holes in the specified zones

$REGION/$VOLUME namelists

Can specify a range of j,k,1 zonal indices to create a hole, or to
unblank part of an existing hole

Rogers 48 /55

Orphan Points

* Orphan points are fringe points for which no valid
interpolation donor can be found

* 2nd- and 3rd-layer fringe-point orphans are reset to active
interior points by default
e Overflow will update the solution data at orphan points by
averaging the neighboring grid points
« A few isolated orphan points are usually acceptable, but it
is advisable to find and fix most or all orphans
« Orphans on solid-wall surfaces usually indicate a serious

problem with surface resolution or projection, and should
be fixed

Rogers 49 / 55

Identifying Orphan Points

e Orphans are reported in the log file, in the output of
peg_plot and using the peg_orph program

» Use the peg_plot program to create a grid file with iblank

» Can plot orphans using several programs:

e plot3d: Plot using function 3
« overgrid: Grid Diagnostics module
« tecplot: Use contours or scatter plots

Rogers 50 /55

Causes of Orphans

Bad hole cuts

Insufficient overlap

Poorly resolved geometry in regions of surface curvature

* Inappropriate or missing boundary conditions

Rogers

Insufficient Overlap

e Increase surface-grid overlap

e Add more splaying to
volume-grid generation

o Add a Cartesian box to cover
the open space

o Grow outer boundaries further

e Add more grid points

Rogers 52 /55

Utility Codes

* peg_setup: creates input file and grid files

e peg_hole_surf: created plot3d grid files containing
solid-wall surfaces used in automatic hole cutting

» peg_plot: creates composite plot3d grid file with iblank

* peg_plot_center: creates composite plot3d grid file with
iblank for cell-centered grids

» peg_diag: produces diagnostic file for plotting
interpolation parameters and connection information

e peg_orph: lists orphan points for each zone

* peg_proj: creates diagnostic plot3d files to plot maximum
surface projections

 XINtegrity: Runs tests and verifies integrity of the
XINTOUT file

Rogers 53 /55

New Utility Codes Available in Version 5.2

dcintegrity: Runs tests and verifies integrity of the dci file

hcut_info: Prints data about each HCUT hole cutter

hcut_plot: Creates plotting files used to examine HCUT
hole cutters

pegb_plotcpu.pl Creates plot of CPU usage for each
processor for an pegasusbmpi run

Rogers 54 /55

Summary

e Pegasusb successfully automates most of the oversetting
process

« Dramatic reduction in the user input over previous
generations of overset software
« Reduced complex-geometry oversetting time from weeks to
hours
« Significant reduction in user-expertise requirements
e Not a “black-box” procedure: care must be taken to
examine the resulting grid system

» NASA Software catalog page for Pegasusb:
https://software.nasa.gov/software/ARC-15117-1A

Rogers 55 /55

https://software.nasa.gov/software/ARC-15117-1A

