Suggar++ Capabilities and
Introduction on Usage

Ralph Noack, Ph.D.
President

Celeritas Simulation Technology, LLC

www.CeleritasSimTech.com

Brief Overview of Capabilities
New Features

Introduction to Suggar++ inputs
— Body Hierarchy

— Transformations

— Grid Input

— Boundary Surfaces

Suggar++ and Pointwise

Overview of DIRTIib and LibSuggar

Overview of
Suggar++ Capabilities

» The premier general overset grid
assembly

» Useable with most any solver/grid system

* Available world wide
— EAR-99 export license

Suggar++® is a registered trademark of Celeritas Simulation Technology, LLC

4

« Structured « Unstructured

— Curvilinear — Tetrahedron
— Analytic — Mixed element

* Cartesian (uniform and * Tet, Hex, Prism,

non-uniform) Pyramid
— Uniform can be — General polyhedral
defined in input file
. Cylindrical — Octree-based
« Spherical Cartesian

- Faster, less storage

* Node- and/or cell-centered assembly

— Has been used to couple different solvers
« Overflow (node-centered) & Octree (cell-centered)

« Support for arbitrary structured solver stencil

— Mark fringes required by flow solver spatial
discretization

» High-order discretization support
— Arbitrary number of fringes
— High-order interpolation for structured grids

» Hole cutting
— Direct cut, analytic, octree, hybrid, manual

» Overlap minimization using general Donor
Suitability Function

— DSF: is this donor suitable for the fringe?
- Element volume, diagonal, min edge length
- Element size (bounding box diagonal)

* Distance-to-wall
— Switch to d-to-wall near surfaces

* Integrated surface assembly
— “Project” fringe grid onto donor grid

— Structured and/or mixed element grids
» Unstructured grid must have layers

— QOverlapping surfaces with relative motion

* Integrated USURP to support Force &
Moment integration

— Integration weights available via file, API to
transfer without file 1/0

* Threads for shared memory machines

* MPI for distributed memory machines

* Hybrid parallel execution

— Use MPI to distribute memory across nodes
— Use threads within a node

Decompose to improve work distribution

— Use more processors than original composite
of grids

Pre-processing step
— Writes decomposed grids and input file

Structured or unstructured grids

DCI is combined back to original
component grids

10

* Suggar++ is designed for moving body
simulations

* Link into flow solver for integrated dynamic OGA

* libSuggar++ AP
— Control execution

— Provide moving body transformations

— Transfer DCI
+ With or without DiRTlib
 Improved capability to send DCI to flow ranks

11

* Suggar++ Dynamic Groups
— Parallel execution in time
— One group assigned to T, another to T+1,...

* Overlap OGA execution with flow solution
— Hide OGA execution time

12

» Structured grids
— Plot3d
— Gridgen
» Unstructured grids
— Some restrictions depending upon input grids
—~VGRID
— AFLR/UGRID
— Cobalt
— OpenFOAM in near future

13

Suggar++
Advanced Capabilities

» Grid point locations are transferred via
— File
— APl to transfer from flow solver

- Recompute appropriate quantities

15

* Orphans result from insufficient overlap

* Suggar++ will flag appropriate locations as
Immersed

» Solver must impose solid boundary on
internal face

— Immersed boundary condition

16

* Octree Organized Collection of Cartesian
grids

» Meakin’s Offbody Bricks
- Berger AMR

17

» Turbomachinery simulations

— Solve 1 blade with periodic boundary
conditions instead of full wheel

* Suggar++donor stencil reaches across
periodic boundary to other side of passage

* “Virtual” grid index used to tell solver
velocities need transformation

18

19

* Suggar++ can refine unstructured grids
— Tetrahedral grids

— Mixed element grids: Tet, Hex, Prism,
Pyramid

* Refine orphans and candidate donors

* List of elements
— Could be provided by flow solutions
— Refine a volume

20

* New component grid
— Copy elements to be refined

— Adds overlap boundaries
* Need more overlap

- Altered connectivity
— Modifies original grid
— No new overlap boundaries

21

Suggar++
New Capabilities

* Numerous bug fixes and increased speed

* Improved robustness of creation of water-
tight surface in <usurp>

 Improved dual-grid donor for cell-centered
structured grids

— Finds donor hex stencil of cell centers

— Tri-linear interpolation

* Monotonic except near boundaries
— Option to reduce to quad at boundaries 23

» Different approaches for

— Static hole cutting

« Saves static holes so no need to cut within a
dynamic group

— Dynamic hole cutting

» Combine approaches for robustness
— Example: Octree + donor search + direct cut

24

Improved approach for overlap
minimization with embedded grids

<body> and <volume_grid> can be
siblings

Plugin support for writing composite grid

Input component and output composite
grids can be compressed

25

* Linux
— 64 bit

« Mac OS X
— 64 bit

 Windows

— 32 & 64 bit
—No MPI

26

* Dr. Darrin Stephens in Australia

* Dr Chris Sideroff in Canada

27

Suggar++ Input

XML

- XML stands for eXtensible Markup Language

— Subset of SGML (Standard Generalized Markup
Language)

- Text-based language used to “mark up” data
— Add metadata (data about the data)
— Self-describing

— Not really a language but a set of syntax rules that let
you create your own “language”

- HTML is designed for a specific
application: Document display

— Specific set of markup constructs

» XML has no specific application
— It is designed for whatever you use it for.

- HTML syntax rules are sloppy
— Some end tags can be omitted

- XML has very precise syntax rules

- An XML tag is enclosed in “< >”
— <start>

- Must have an associated end tag

— Same as start tag but with / after <
— </start>

<pame>
<first>Jdohn</first>
<|last>Doe</last>
</name>

- Empty elements can have implicit end tag
— <name></name> can be written as <name/>

- Each XML tag defines an item or element

- Elements can be embedded inside start/end pair
of another element
— Creates a parent/child and sibling/sibling relationship
— Children define element content

— Child element must be closed before a parent can be
closed

* Only one root element allowed

 Hierarchy for <name> example

<name>
<first>dohn</first>
<last>Doe</last>
</name>

name |
E John

ﬂ

Doe

« Attributes

— are name/value pairs associated with an
element

— are always attached to the start tag

— must have a value enclosed in quotes
(either single or double quotes)

* Place inside of start tag before closing “>”

<body name=*“store”’>

« Comments in XML
— start with <!-- and end with -2

— cannot use -- in the comment string
<l-- cannot embed double dashes -- 2>

— cannot be within a tag
<start <!-- this is illegal--> />

Suggar++ Input

Input Sections

36

* Global parameter
— Content of <global>

- Body Hierarchy
— <body>

* Grid/Surface definition

— <volume_grid> and others
- <boundary_surface>

37

- All input values are specified by element
attributes

— <body name="root">

— Data between elements (PCDATA) is ignored
« Can use as comments, some restricted characters

« Some attributes are required
— Will abort if not present

 Other attributes are optional

38

Suggar++ Input

Body Hierarchy

39

A hierarchical grouping of grids/bodies minimizes user
inputs and controls which grids are cut by which surfaces

- Siblings cut each other

— Geometry in one body (including all children) cuts all grids in a
sibling body (including all children)

<body name=“Root">

<body name="Aircraft">
<body name="Wing“/>
<body name="Pylon“/>
</body>

<body name="Store">
<body name="Body*“/>
<body name="Fin1“/>
<body name="Fin2“/>
<body name="Fin3"“/>
<body name="Fin4“/>
</body>

</body>

Suggar++ Input

Transformations

42

- Transformations are associated with a body

« Suggar++has two different types of transformations

— Static transformations

* Applied to the grid coordinates on input

 Original coordinates are replaced by transformed coordinates
— Dynamic transformations

- Flags the body as moving

+ Grid coordinates are left in original coordinates
— Transformations are always from original coordinate system
— Not cumulative

« Transformations are used internally during execution
* Output grids are transformed

» Transformations are hierarchical
— Child body transformations are relative to the parent

<body name="center-store">
<include filename="Input/store.xml"/>
</body>

<body name="inboard-store">
<transform> <translate axis="y" value="-2"/> </transform>
<include name_suffix="-inboard" filename="Input/store.xml"/>
</body>

<body name="outboard-store">
<transform> <translate axis="y" value="2"/> </transform>
<include name_suffix="-outboard" filename="Input/store.xml"/>
</body>

Suggar++ Input

Component Grid Input

46

« Structured « Unstructured

— Curvilinear — Tetrahedron
— Analytic — Mixed element

* Cartesian (uniform and * Tet, Hex, Prism,

non-uniform) Pyramid
— Uniform can be — General polyhedral
defined in input file
. Cylindrical — Octree-based
« Spherical Cartesian

- Faster, less storage

Parent element is <body>

Associates a grid with a body
— Actual grid to be used is specified with the filename attribute.

A body can have more than one <volume grid> child

* Required attribute is name="grid name*

<body name="Wing">
<volume_grid name="wing grid”>
</volume_grid>

</body>

» Grid file is specified with the attributes...
— filename="file”
— Style="style”

» Both are required

<volume_grid name="wing”
filename="Grids/wing.g” style="p3d"/>

Suggar++ Input

Boundary Surfaces

50

» Suggar++ boundary conditions do not need to
“match” flow solver boundary conditions

- Some cases where there may be a loose
mapping
— Flow solver “wall” ~ Suggar++ “solid”
— Flow solver “farfield” ~ Suggar++ “farfield”
— Block-to-Block, etc.

- Many cases where they must be different than
solver boundary conditions

— Hole cutting geometry must be closed/*water tight™!!!

-+ Surface is not solid geometry but must be used as hole
cutting geometry
— Inlet/Exhaust surface

— Solver has solid surface but is not needed as cutting
surface
- Tunnel walls but no grids extend past tunnel walls

— Suggar++ has a limited set of BCs

» Automatically created for unstructured surface
patches

» Must be explicitly defined for structured grids

— If not defined a surface is created with a boundary
condition of “overlap”

« Automatically set for VGRID files
— Internal mapping between USM3D BCs and Suggar++ BCs

- Boundary conditions can be specified
— In the input XML file
— In auxiliary files
+ gridFilename.suggar_surface bc
 gridFilename.suggar_mapbc

* An auxiliary file can also be used to specify solver BCs in
the output composite grid

— filename.solver _bc

- Parent element is <volume grid>, <cartesian_grid>,....

* |tis a container element for content

» Specifies the surface and boundary condition type for
boundary surfaces in the parent grid

* Required attribute is name="surface name”

<boundary_ surface name=‘wing’>
</boundary_surface>

- Parent element is <boundary surface>
+ Specifies the boundary surface in a structured grid.

* Required attributes
— range1="start.end”
 Index range in the first index (I for IJK, J for JKL)

— range2="start.:end”
* Index range in the second index (J for IJK, K for JKL)
— range3="start.end”
* Index range in the third index (K for IJK, L for JKL)
— Negative number counts backwards from the end:
* -1is the same as max value, -2 is same as max-1 value, etc.

— Can also use min, max, all

<boundary_surface name=‘wing’>
<region range1="21:-21’ range2=1:-1’ range3=‘1:1’/>
</boundary_surface>

« Parent element is <boundary surface>

« Specifies the boundary condition to be applied at the
boundary surface

* These are SUGGAR BCs and don’t necessarily match the
flow solver BCs

« Required attribute type="boundary type”

<boundary_surface name=‘wing’>
<region range1="21:-21’ range2=1:-1’ range3='1:1’/>
<boundary_condition type=‘solid’/>
</boundary_surface>

“overlap” An overset or overlap boundary surface.
“solid” A solid boundary and will be used to define the hole cutting geometry.

“symmetry” A symmetry non-overset boundary surface. The grid points on the
symmetry boundary will be used to determine the value of the symmetry
plane.

“axis” A singular axis where all the grid points in one of the computational
coordinates are collapsed to a point.

“periodic” A periodic boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“cut” The surface is a cut boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“block-to-block”, “block-block”, “block2block” The surface is a block-to-
block interface to another grid. Requires additional attributes.

“freestream” or “farfield” A freestream non-overset boundary surface

“non-overlap”, “non_overlap”, “nonoverlap”, “non-solid” , “non-*" The surface is

an unspecified non-overset boundary.

- <boundary condition> has an optional attribute
solver_bc="bc string”

 Allows the user to specify a boundary condition for
the surface to be output to a cobalt.bc file

- |f solver_bc is not included, the SUGGAR BC is
output.

<boundary_condition
type=‘solid’
solver bc="viscous wall’/>

» Suggar++ will write selected solver
boundary condition files for the composite
grid
— Vgrid

project.mapbc file
— Cobalt
composite grid filename_cobalt_bc

— Other unstructured grid formats
composite grid filename.suggar_mapbc

- Solver BCs can be set from auxiliary files
associated with each component grid
— Vgrid
project.mapbc file

— Cobalt

« grid_filename_cobalt _bc
* basename.cobalt_bc

* Where basename = grid_filename with trailing suffix
removed

— Other formats

 grid_filename.solver_bc
 grid_filename.suggar_mapbc

» QOverlapping surface grids present several
additional complexities

— Surfaces in a grid can be associated with
different geometry components

— Overlapping surfaces will have different
discrete representations

— Qverlapping surfaces require special
treatment to eliminate double counting in
Force and Moment integration

+ Surfaces that overlap on geometry with
curvature will have different discrete
representations

- Difficulties arise when the tangential
spacing is “large” relative to the curvature
and the normal spacing

» Special procedures are required to
properly find appropriate donors

* “Projection” of one surface onto the other is required to
properly locate donors

Actual Geometry
Grid B

» Grids are not actually projected
— Grid points are not changed

* Fringe points will be shifted appropriately during
the donor search

« Surface Assembly procedure is used to find the
shift for each fringe point

— Relative to overlapping surface in each donor grid

- A fringe point will have different shifts/offsets for each donor
grid

* For each surface grid point (node-
centered) or face center (cell-centered)
— Location appropriate donor faces in
overlapping grid

— Find normal distance from surface location to
the surface donor face
« Save deviation and the surface normal

— Adjacent element is the volume donor for
node-centered surface points

» Volume fringes will be shifted using the
surface assembly deviation

— Shift will decay for points away from the
surface

— Interpolation deviation will be computed using
the shifted fringe point
* Flow solver will not have the shift so computing the

interpolation deviation in the flow solver will not
give the same result

* Suggar++ performs the surface assembly
internally

— Enabled with <surface assembly/> element

» Dynamic overlap is now supported
— Static surfaces are assembled once

— During motion only perform the assembly
between surfaces in different dynamic grids

Parent element is <global>

Required attribute

— max_deviation_allowed="value in grid units”
* Ignore surface overlap if deviation is larger than the specified value

Optional attribute
* max_angle deviation_allowed="angle in degrees”

* Ignore surface overlap if angle between donor face and normal at
surface fringe point is larger than the specified value

<surface assembly max_deviation allowed="0.0001"/>

« Work/max_surface _assembly deviation.txt
— Surface deviation for each surface in all grids

* Work/SurfaceDeviation/Grid-#-name/surfname
— # is the composite grid index
— name is the grid name
— surfname is surface name

— Directory contains PLOT3D grid and Q file to visualize the
deviation:
« Grid is multi-block PLOT3D, with iblank, single precision, unformatted
— DonorGrid-#-name.p3dwibu

« Qis multi-block PLOT3D Overflow Q file, with iblank, single precision,
unformatted, one dependent variable: surface deviation
— DonorGrid-#-name.p3dqgou

A
§

e e

= ,?,f’.;
Tzt
e

- Special treatment to eliminate double counting in
force and moment integration

— Panel weights

+ Weight factor between 0 & 1 for each integration surface
face/panel

— Single valued (water tight) integration surface

* Remove overlap, glue remaining portions of original surfaces
together using new triangles

* Tools

— FOMOCO
— USURP/PolyMixsur

- Similar but not identical to the USURP utility
— Different coding

— Uses CLIPPER library for polygon clipping
* more robust than GPG used in USURP

— Triangulation routines are different than USURP

- Panel weights
— Included in DCI file: Can be retrieved via DiRTlib
— Written to files

- Can create zipper/watertight grid

- Parent element is <global>
* No required attributes
 Lots of optional attributes

<global>
<usurp/>

* panels_ weights.txt

— List of panel index, area_ratio, area,
ratio*area, is_clipped, number_contours

- Surface panels and triangles
— Tecplot file: usurp-surfaces.dat
— Flex file for gviz: usurp-surfaces.flex

» Panels and clipped polygons
— Flex file for gviz: usurp panels.flex

- |f create_watertight surfaces="yes’

- Zipper grid:
— Quads and zipper triangles

- water_tight_surface faces.flex
- water_tight_surface faces dg_ *.flex

— Zipper triangles with quads replaced by
triangles
- water_tight_surface faces_all tris.flex
- water_tight_surface faces_all tris dg *.flex
 usurp-triangles.dat (Tecplot file)

polygon ranking basis='panel|patch’
— Select the approach for prioritizing the choice of panels. Default

value is 'panel.

| |
5 ()

P 5 A LA [,

KPS e . B
hvZERvd /’i‘(}-{\ \ /

- /) ‘_'

PN PAN AN N WL 00 i Ave
£ A~ AN AT I =
I AWA DAV AN oK
I A AR DL SAT Y R X P A
Tl R P R SR T P ATt TS

s N NN R T o e i
o W S L e i e
T T R e R
T k - =
e S :
| | 1l

- polygon ranking basis="panel'
— Priority is local: panel/face with smallest area

I —1T 1

- polygon_ranking basis='patch’
— Priority is based upon the surface with the most surface fringes

)
.kl.,‘g e

W
) ‘.s":\:\“ N
NI
Al ’I““‘ P

|J
5{{"‘
)

"

.‘!
(N
e

Overview of
DiRTlib and LibSuggar

» DIiRTIib is: Donor interpolation Receptor
Transaction library

* ltis a solver neutral library to provide the
required capability for using overset composite
grids
— Work with most ANY flow solver
— Knows nothing of solver connectivity
— Does not depend upon a specific solver storage

84

» Goal is to minimize modifications required to flow
solver

— Provide a few functions to DiRTlib
 Interface to solver data

— Insert a few function calls

* Most solvers utilize an IBLANK array
— Not required but in most cases easiest approach

85

Allows variable number of Dependent Variables

Supports Segregated Solvers
Single Unstructured Grid

— Unstructured grid solver sees a single composite grid.
— Domain connectivity is based upon set of component grids

Parallel Execution

— Decomposition
» Defined by solver
« Can decompose structured grids

86

* Domain Connectivity Information
— Read DCI files: SUGGAR/Suggar++, Pegasus 5

— Suggar++

* Donor Details

— Some solvers need to build interpolation into linear
solution

* Relative Motion
— What cells are moving
— What is transformation to position body

87

+ Solver interface functions

— DIiRTIib does not (or rarely) directly access solver
storage

— Solver provides interface functions that DiRTlib calls
to get/put values in solver storage

* Add a few calls to control execution

— Initialize library
— Perform interpolation/apply fringe values

88

* Library is written in C
— Functions names start with drt_

 FORTRAN interface written in C
— Functions names start with drtf _
— Supports names with 0,1,2 appended underscores
— Long function names are abbreviated
— drt_fortran_interface.c provides FORTRAN wrappers

— libdirt_interface.f90 can be compiled to provide
module that provides function prototypes

89

Domain Connectivity (DC) API (libSuggar) to allow
Integrated overset grid assembly process

Flow solver calls DC API (libSuggar) to control execution

— libSuggar can be called from dedicated rank
+ Required splitting MPl communicator
* Modify solver to execute DC only on dedicated rank
 Distributes SUGGAR memory usage

— Can still write/read DCI file

Domain Connectivity Exchange (DCX) calls allow DCI to
be transferred via calls without writing/reading DCI file

90

 Library is written in C or C++
— Functions names start with dc_ or dex_

« FORTRAN interface written in C

— Functions names start with def _ or dexf
— Supports names with 0,1,2 appended underscores
— Long function names are abbreviated

— F90 module can be compiled to provide function
prototypes

91

QtViz

Open Source
Replacement for Gviz

» Gviz used to visualize grids, Suggar++
input, DCI
— Uses Motif for GUIL: no Windows version

» QtViz is a rewrite

— Hoping for similar functionality

— Using Qt for GUI

 Cross platform portability
— Linux, Mac OS X, Windows

— Improved GUI

93

Screen Rot

Body Rot

Trans

Zoom

(n]

Accel

O Joystick Mode
() Mouse Mode

Str Grids | Unstr Grids

All
Boundary Patch IDs Bnd Wire Frame
Patch=1;ﬁn+y+z;so|id Bnd Solid Fill B b e led i
Patch=2;fin-y+z;solid [Fringe Points

Patch=3;fin-y-z;solid O Orphan Points

Patch=4;fin+y-z;solid

Patch=5;store_body;solid

Patch=6;outer;overlap

Select: [All] [None

Cell Indices ’ l [] Display

(o]

4

Hosted on GitHub
— GPL license

Project URL
— https://github.com/rwnoack/QtViz

Clone with
— git clone git@github.com:rwnoack/QtViz.git

Seeking Active contributors

95

Suggar++ and Pointwise

» Currently supports PEGASUS 5 and
Suggar++

» Within pointwise
— Allows user to define inputs via GUI
* Input definition is via XML file

— Run OGA
— Visualize results
— Modify grid system

— And more... .

- Some Suggar++ input elements are not
visible in pointwise GUI

— Handled internally in pointwise

» <volume_grids>
» <boundary_surface> and content

— Not supported in pointwise
» Analytic grids

— <cartesian_grid>, <cylindrical_grid>, <spherical_grid>

98

* New input definition file can be provided
with Suggar++ release

* Replace installed file or set an
environment file

99

Commercial distribution and support
for Suggar++provided by

Celeritas Simulation Technology, LLC
http://www.CeleritasSimTech.com

Exportable under an EAR-99 license

100

Utilities Provided With
Suggar++

* RefineGrids
— Refine structured grids by factor of 2

* DerefineGrids
— Derefine structured grids by factor of 2

» Scripts to generate a sequence of
derefined grids

Convert
— Convert between different unstructured grid formats

Mirror
— Mirror a set of structured grids and Input.xml

report_number_grids
— Output the number of component grids

cmp_dci
— Compare the DCI in two files

Suggested Work Process

- Build input in pieces
— Or use <skip> </skip> to hide complete subtrees

* Check and Indent XML file
— xmllint -format

— xmlformat.pl
— Emacs

 Visualize surfaces
— Especially solid surfaces

— Color collar surfaces differently

* Put “collar” in surface name
— <boundary_surface name="kmin-solid-collar-with-sting”>

» <boundary_surface const_coord="">
— Make sure have right value on right surface
— Look at composite grid

- Reorientation of grid blocks without
appropriate changes to input

- Manual cutting and symmetry planes
— Can cut wrong direction

» Redirect the Suggar++output
— suggar++ -reopen

» During initial testing reduce wall clock time
— suggar++ -ignore-composite-grid
— suggar++ -ignore-minimize-overlap

» Check suggar++progress during execution

— One line added at start of each stage of
execution

* We suggest putting critical input files in
directories to minimize the chance of
accidental removal

— Put all your component grid files in Grids/

— Put your input files in Input/

« Suggar++will default to read Input/Input.xml
— “suggar++ Input/Input.xml” is same as “suggar++”

- We suggest using standard scripts

— Run
- Execute Suggar++ and check for errors

— Clean
- Remove (LOTS) of files that Suggar++ can write

#!/bin/bash

STDERR=out.stderr++
$SUGGARPP OPT EXE -reopen $*

EXIT STATUS=S$?

if [[$EXIT_STATUS != 0]];

then
echo "FAILURE: suggar++ has failed with exit status S$EXIT STATUS"
grep "Error:" $STDERR

exit S$EXIT STATUS
fi

if [[-e summary zipper.log]]; then

cat summary zipper.log >> summary.log
fi

rm

rm

rm

rm

rm

-f allgrids.p3dudl* *.dci* out* *log *gress

-f panels weights.txt Suggar++Error.backtrace
-f usurp* zipper *.flex cut elements*
-rf Work

-rf * trace *

» Look at
— summary.log

— Standard error output file
» -reopen will write to out.stderr++

* Visualize the DCI

— Look at orphans
— All blanked points

- May have flood fill leak if entire grid is blanked out

* Will present a set of DiRTIib and
LibSuggar++ function calls

* lllustrative of how few calls are required

— Not necessarily all that are required or correct
order

- Parallel execution requires conditionals so
some calls are only executed on specific
processors

113

drt_set num_data_ values all grids(N)
drt_Init(PutDataValue,GetDataValue,...)
dcx_set _dci_master _rank_in_group _comm(0)
drt_rank _dci_only()

drt_rank flow_ only()

drt_pll_init(0,0)

dc_init()

114

> drt_init_str_subgrid_decomposition_map()
» drt_map_str subgrid to rank(...)
 drt_end_str_subgrid_decomposition_map()

 Other calls for unstructured grids

115

dc_begin_motion_input()
dc_add_motion_input(...)
dc_end_motion_input()
dc_parse _motion()

116

» dc_compute_dci()
 drt_get dci()
- drt_generate_transmit_apply()

» dc_release_dci()

117

