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Overview of
Suggar++ Capabilities



» The premier general overset grid
assembly

» Useable with most any solver/grid system

* Available world wide
— EAR-99 export license

Suggar++® is a registered trademark of Celeritas Simulation Technology, LLC
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« Structured « Unstructured

— Curvilinear — Tetrahedron
— Analytic — Mixed element

* Cartesian (uniform and * Tet, Hex, Prism,

non-uniform) Pyramid
— Uniform can be — General polyhedral
defined in input file
. Cylindrical — Octree-based
« Spherical Cartesian

- Faster, less storage



* Node- and/or cell-centered assembly

— Has been used to couple different solvers
« Overflow (node-centered) & Octree (cell-centered)

« Support for arbitrary structured solver stencil

— Mark fringes required by flow solver spatial
discretization

» High-order discretization support
— Arbitrary number of fringes
— High-order interpolation for structured grids



» Hole cutting
— Direct cut, analytic, octree, hybrid, manual

» Overlap minimization using general Donor
Suitability Function

— DSF: is this donor suitable for the fringe?
- Element volume, diagonal, min edge length
- Element size ( bounding box diagonal)

* Distance-to-wall
— Switch to d-to-wall near surfaces



* Integrated surface assembly
— “Project” fringe grid onto donor grid

— Structured and/or mixed element grids
» Unstructured grid must have layers

— QOverlapping surfaces with relative motion

* Integrated USURP to support Force &
Moment integration

— Integration weights available via file, API to
transfer without file 1/0



* Threads for shared memory machines

* MPI for distributed memory machines

* Hybrid parallel execution

— Use MPI to distribute memory across nodes
— Use threads within a node



Decompose to improve work distribution

— Use more processors than original composite
of grids

Pre-processing step
— Writes decomposed grids and input file

Structured or unstructured grids

DCI is combined back to original
component grids
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* Suggar++ is designed for moving body
simulations

* Link into flow solver for integrated dynamic OGA

* libSuggar++ AP
— Control execution

— Provide moving body transformations

— Transfer DCI
+ With or without DiRTlib
 Improved capability to send DCI to flow ranks
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* Suggar++ Dynamic Groups
— Parallel execution in time
— One group assigned to T, another to T+1,...

* Overlap OGA execution with flow solution
— Hide OGA execution time
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» Structured grids
— Plot3d
— Gridgen
» Unstructured grids
— Some restrictions depending upon input grids
—~VGRID
— AFLR/UGRID
— Cobalt
— OpenFOAM in near future
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Suggar++
Advanced Capabilities



» Grid point locations are transferred via
— File
— APl to transfer from flow solver

- Recompute appropriate quantities
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* Orphans result from insufficient overlap

* Suggar++ will flag appropriate locations as
Immersed

» Solver must impose solid boundary on
internal face

— Immersed boundary condition
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* Octree Organized Collection of Cartesian
grids

» Meakin’s Offbody Bricks
- Berger AMR
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» Turbomachinery simulations

— Solve 1 blade with periodic boundary
conditions instead of full wheel

* Suggar++donor stencil reaches across
periodic boundary to other side of passage

* “Virtual” grid index used to tell solver
velocities need transformation
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* Suggar++ can refine unstructured grids
— Tetrahedral grids

— Mixed element grids: Tet, Hex, Prism,
Pyramid

* Refine orphans and candidate donors

* List of elements
— Could be provided by flow solutions
— Refine a volume
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* New component grid
— Copy elements to be refined

— Adds overlap boundaries
* Need more overlap

- Altered connectivity
— Modifies original grid
— No new overlap boundaries
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Suggar++
New Capabilities



* Numerous bug fixes and increased speed

* Improved robustness of creation of water-
tight surface in <usurp>

 Improved dual-grid donor for cell-centered
structured grids

— Finds donor hex stencil of cell centers

— Tri-linear interpolation

* Monotonic except near boundaries
— Option to reduce to quad at boundaries 23



» Different approaches for

— Static hole cutting

« Saves static holes so no need to cut within a
dynamic group

— Dynamic hole cutting

» Combine approaches for robustness
— Example: Octree + donor search + direct cut
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Improved approach for overlap
minimization with embedded grids

<body> and <volume_grid> can be
siblings

Plugin support for writing composite grid

Input component and output composite
grids can be compressed
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* Linux
— 64 bit

« Mac OS X
— 64 bit

 Windows

— 32 & 64 bit
—No MPI
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* Dr. Darrin Stephens in Australia

* Dr Chris Sideroff in Canada
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Suggar++ Input

XML



- XML stands for eXtensible Markup Language

— Subset of SGML (Standard Generalized Markup
Language)

- Text-based language used to “mark up” data
— Add metadata (data about the data)
— Self-describing

— Not really a language but a set of syntax rules that let
you create your own “language”



- HTML is designed for a specific
application: Document display

— Specific set of markup constructs

» XML has no specific application
— It is designed for whatever you use it for.

- HTML syntax rules are sloppy
— Some end tags can be omitted

- XML has very precise syntax rules



- An XML tag is enclosed in “< >”
— <start>

- Must have an associated end tag

— Same as start tag but with / after <
— </start>

<pame>
<first>Jdohn</first>
<|last>Doe</last>
</name>

- Empty elements can have implicit end tag
— <name></name> can be written as <name/>



- Each XML tag defines an item or element

- Elements can be embedded inside start/end pair
of another element
— Creates a parent/child and sibling/sibling relationship
— Children define element content

— Child element must be closed before a parent can be
closed

* Only one root element allowed



 Hierarchy for <name> example

<name>
<first>dohn</first>
<last>Doe</last>
</name>

name |
E John

ﬂ

Doe




« Attributes

— are name/value pairs associated with an
element

— are always attached to the start tag

— must have a value enclosed in quotes
(either single or double quotes)

* Place inside of start tag before closing “>”

<body name=*“store”’>



« Comments in XML
— start with <!-- and end with -2

— cannot use -- in the comment string
<l-- cannot embed double dashes -- 2>

— cannot be within a tag
<start <!-- this is illegal--> />



Suggar++ Input

Input Sections
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* Global parameter
— Content of <global>

- Body Hierarchy
— <body>

* Grid/Surface definition

— <volume_grid> and others
- <boundary_surface>
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- All input values are specified by element
attributes

— <body name="root">

— Data between elements (PCDATA) is ignored
« Can use as comments, some restricted characters

« Some attributes are required
— Will abort if not present

 Other attributes are optional
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Suggar++ Input

Body Hierarchy
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A hierarchical grouping of grids/bodies minimizes user
inputs and controls which grids are cut by which surfaces

- Siblings cut each other

— Geometry in one body (including all children) cuts all grids in a
sibling body (including all children)




<body name=“Root">

<body name="Aircraft">
<body name="Wing“/>
<body name="Pylon“/>
</body>

<body name="Store">
<body name="Body*“/>
<body name="Fin1“/>
<body name="Fin2“/>
<body name="Fin3"“/>
<body name="Fin4“/>
</body>

</body>



Suggar++ Input

Transformations
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- Transformations are associated with a body

« Suggar++has two different types of transformations

— Static transformations

* Applied to the grid coordinates on input

 Original coordinates are replaced by transformed coordinates
— Dynamic transformations

- Flags the body as moving

+ Grid coordinates are left in original coordinates
— Transformations are always from original coordinate system
— Not cumulative

« Transformations are used internally during execution
* Output grids are transformed

» Transformations are hierarchical
— Child body transformations are relative to the parent






<body name="center-store">
<include filename="Input/store.xml"/>
</body>

<body name="inboard-store">
<transform> <translate axis="y" value="-2"/> </transform>
<include name_suffix="-inboard" filename="Input/store.xml"/>
</body>

<body name="outboard-store">
<transform> <translate axis="y" value="2"/> </transform>
<include name_suffix="-outboard" filename="Input/store.xml"/>
</body>




Suggar++ Input

Component Grid Input
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« Structured « Unstructured

— Curvilinear — Tetrahedron
— Analytic — Mixed element

* Cartesian (uniform and * Tet, Hex, Prism,

non-uniform) Pyramid
— Uniform can be — General polyhedral
defined in input file
. Cylindrical — Octree-based
« Spherical Cartesian

- Faster, less storage



Parent element is <body>

Associates a grid with a body
— Actual grid to be used is specified with the filename attribute.

A body can have more than one <volume grid> child

* Required attribute is name="grid name*

<body name="Wing">
<volume_grid name="wing grid”>
</volume_grid>

</body>



» Grid file is specified with the attributes...
— filename="file”
— Style="style”

» Both are required

<volume_grid name="wing”
filename="Grids/wing.g” style="p3d"/>



Suggar++ Input

Boundary Surfaces

50



» Suggar++ boundary conditions do not need to
“match” flow solver boundary conditions

- Some cases where there may be a loose
mapping
— Flow solver “wall” ~ Suggar++ “solid”
— Flow solver “farfield” ~ Suggar++ “farfield”
— Block-to-Block, etc.



- Many cases where they must be different than
solver boundary conditions

— Hole cutting geometry must be closed/*water tight™!!!

-+ Surface is not solid geometry but must be used as hole
cutting geometry
— Inlet/Exhaust surface

— Solver has solid surface but is not needed as cutting
surface
- Tunnel walls but no grids extend past tunnel walls

— Suggar++ has a limited set of BCs



» Automatically created for unstructured surface
patches

» Must be explicitly defined for structured grids

— If not defined a surface is created with a boundary
condition of “overlap”



« Automatically set for VGRID files
— Internal mapping between USM3D BCs and Suggar++ BCs

- Boundary conditions can be specified
— In the input XML file
— In auxiliary files
+ gridFilename.suggar_surface bc
 gridFilename.suggar_mapbc

* An auxiliary file can also be used to specify solver BCs in
the output composite grid

— filename.solver _bc



- Parent element is <volume grid>, <cartesian_grid>,....

* |tis a container element for content

» Specifies the surface and boundary condition type for
boundary surfaces in the parent grid

* Required attribute is name="surface name”

<boundary_ surface name=‘wing’>
</boundary_surface>



- Parent element is <boundary surface>
+ Specifies the boundary surface in a structured grid.

* Required attributes
— range1="start.end”
 Index range in the first index (I for IJK, J for JKL)

— range2="start.:end”
* Index range in the second index (J for IJK, K for JKL)
— range3="start.end”
* Index range in the third index (K for IJK, L for JKL)
— Negative number counts backwards from the end:
* -1is the same as max value, -2 is same as max-1 value, etc.

— Can also use min, max, all

<boundary_surface name=‘wing’>
<region range1="21:-21’ range2=1:-1’ range3=‘1:1’/>
</boundary_surface>



« Parent element is <boundary surface>

«  Specifies the boundary condition to be applied at the
boundary surface

* These are SUGGAR BCs and don’t necessarily match the
flow solver BCs

« Required attribute type="boundary type”

<boundary_surface name=‘wing’>
<region range1="21:-21’ range2=1:-1’ range3='1:1’/>
<boundary_condition type=‘solid’/>
</boundary_surface>



“overlap” An overset or overlap boundary surface.
“solid” A solid boundary and will be used to define the hole cutting geometry.

“symmetry” A symmetry non-overset boundary surface. The grid points on the
symmetry boundary will be used to determine the value of the symmetry
plane.

“axis” A singular axis where all the grid points in one of the computational
coordinates are collapsed to a point.

“periodic” A periodic boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“cut” The surface is a cut boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“block-to-block”, “block-block”, “block2block” The surface is a block-to-
block interface to another grid. Requires additional attributes.

“freestream” or “farfield” A freestream non-overset boundary surface

“non-overlap”, “non_overlap”, “nonoverlap”, “non-solid” , “non-*" The surface is

an unspecified non-overset boundary.



- <boundary condition> has an optional attribute
solver_bc="bc string”

 Allows the user to specify a boundary condition for
the surface to be output to a cobalt.bc file

- |f solver_bc is not included, the SUGGAR BC is
output.

<boundary_condition
type=‘solid’
solver bc="viscous wall’/>



» Suggar++ will write selected solver
boundary condition files for the composite
grid
— Vgrid

project.mapbc file
— Cobalt
composite grid filename_cobalt_bc

— Other unstructured grid formats
composite grid filename.suggar_mapbc



- Solver BCs can be set from auxiliary files
associated with each component grid
— Vgrid
project.mapbc file

— Cobalt

« grid_filename_cobalt _bc
* basename.cobalt_bc

* Where basename = grid_filename with trailing suffix
removed

— Other formats

 grid_filename.solver_bc
 grid_filename.suggar_mapbc



» QOverlapping surface grids present several
additional complexities

— Surfaces in a grid can be associated with
different geometry components

— Overlapping surfaces will have different
discrete representations

— Qverlapping surfaces require special
treatment to eliminate double counting in
Force and Moment integration



+ Surfaces that overlap on geometry with
curvature will have different discrete
representations

- Difficulties arise when the tangential
spacing is “large” relative to the curvature
and the normal spacing

» Special procedures are required to
properly find appropriate donors



* “Projection” of one surface onto the other is required to
properly locate donors

Actual Geometry
Grid B




» Grids are not actually projected
— Grid points are not changed

* Fringe points will be shifted appropriately during
the donor search

« Surface Assembly procedure is used to find the
shift for each fringe point

— Relative to overlapping surface in each donor grid

- A fringe point will have different shifts/offsets for each donor
grid



* For each surface grid point (node-
centered) or face center (cell-centered)
— Location appropriate donor faces in
overlapping grid

— Find normal distance from surface location to
the surface donor face
« Save deviation and the surface normal

— Adjacent element is the volume donor for
node-centered surface points



» Volume fringes will be shifted using the
surface assembly deviation

— Shift will decay for points away from the
surface

— Interpolation deviation will be computed using
the shifted fringe point
* Flow solver will not have the shift so computing the

interpolation deviation in the flow solver will not
give the same result



* Suggar++ performs the surface assembly
internally

— Enabled with <surface assembly/> element

» Dynamic overlap is now supported
— Static surfaces are assembled once

— During motion only perform the assembly
between surfaces in different dynamic grids



Parent element is <global>

Required attribute

— max_deviation_allowed="value in grid units”
* Ignore surface overlap if deviation is larger than the specified value

Optional attribute
* max_angle deviation_allowed="angle in degrees”

* Ignore surface overlap if angle between donor face and normal at
surface fringe point is larger than the specified value

<surface assembly max_deviation allowed="0.0001"/>



« Work/max_surface _assembly deviation.txt
— Surface deviation for each surface in all grids

*  Work/SurfaceDeviation/Grid-#-name/surfname
— # is the composite grid index
— name is the grid name
— surfname is surface name

— Directory contains PLOT3D grid and Q file to visualize the
deviation:
« Grid is multi-block PLOT3D, with iblank, single precision, unformatted
— DonorGrid-#-name.p3dwibu

« Qis multi-block PLOT3D Overflow Q file, with iblank, single precision,
unformatted, one dependent variable: surface deviation
— DonorGrid-#-name.p3dqgou
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- Special treatment to eliminate double counting in
force and moment integration

— Panel weights

+ Weight factor between 0 & 1 for each integration surface
face/panel

— Single valued (water tight) integration surface

* Remove overlap, glue remaining portions of original surfaces
together using new triangles

* Tools

— FOMOCO
— USURP/PolyMixsur



- Similar but not identical to the USURP utility
— Different coding

— Uses CLIPPER library for polygon clipping
* more robust than GPG used in USURP

— Triangulation routines are different than USURP

- Panel weights
— Included in DCI file: Can be retrieved via DiRTlib
— Written to files

- Can create zipper/watertight grid



- Parent element is <global>
* No required attributes
 Lots of optional attributes

<global>
<usurp/>



* panels_ weights.txt

— List of panel index, area_ratio, area,
ratio*area, is_clipped, number_contours

- Surface panels and triangles
— Tecplot file: usurp-surfaces.dat
— Flex file for gviz: usurp-surfaces.flex

» Panels and clipped polygons
— Flex file for gviz: usurp panels.flex



- |f create_watertight surfaces="yes’

- Zipper grid:
— Quads and zipper triangles

- water_tight_surface faces.flex
- water_tight_surface faces dg_ *.flex

— Zipper triangles with quads replaced by
triangles
- water_tight_surface faces_all tris.flex
- water_tight_surface faces_all tris dg *.flex
 usurp-triangles.dat (Tecplot file)









polygon ranking basis='panel|patch’
— Select the approach for prioritizing the choice of panels. Default

value is 'panel.
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- polygon ranking basis="panel'
— Priority is local: panel/face with smallest area

I —1T 1




- polygon_ranking basis='patch’
— Priority is based upon the surface with the most surface fringes
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Overview of
DiRTlib and LibSuggar



» DIiRTIib is: Donor interpolation Receptor
Transaction library

* ltis a solver neutral library to provide the
required capability for using overset composite
grids
— Work with most ANY flow solver
— Knows nothing of solver connectivity
— Does not depend upon a specific solver storage
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» Goal is to minimize modifications required to flow
solver

— Provide a few functions to DiRTlib
 Interface to solver data

— Insert a few function calls

* Most solvers utilize an IBLANK array
— Not required but in most cases easiest approach
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Allows variable number of Dependent Variables

Supports Segregated Solvers
Single Unstructured Grid

— Unstructured grid solver sees a single composite grid.
— Domain connectivity is based upon set of component grids

Parallel Execution

— Decomposition
» Defined by solver
« Can decompose structured grids
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* Domain Connectivity Information
— Read DCI files: SUGGAR/Suggar++, Pegasus 5

— Suggar++

* Donor Details

— Some solvers need to build interpolation into linear
solution

* Relative Motion
— What cells are moving
— What is transformation to position body
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+ Solver interface functions

— DIiRTIib does not (or rarely) directly access solver
storage

— Solver provides interface functions that DiRTlib calls
to get/put values in solver storage

* Add a few calls to control execution

— Initialize library
— Perform interpolation/apply fringe values
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* Library is written in C
— Functions names start with drt_

 FORTRAN interface written in C
— Functions names start with drtf _
— Supports names with 0,1,2 appended underscores
— Long function names are abbreviated
— drt_fortran_interface.c provides FORTRAN wrappers

— libdirt_interface.f90 can be compiled to provide
module that provides function prototypes
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Domain Connectivity (DC) API (libSuggar) to allow
Integrated overset grid assembly process

Flow solver calls DC API (libSuggar) to control execution

— libSuggar can be called from dedicated rank
+ Required splitting MPl communicator
* Modify solver to execute DC only on dedicated rank
 Distributes SUGGAR memory usage

— Can still write/read DCI file

Domain Connectivity Exchange (DCX) calls allow DCI to
be transferred via calls without writing/reading DCI file
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 Library is written in C or C++
— Functions names start with dc_ or dex_

« FORTRAN interface written in C

— Functions names start with def _ or dexf
— Supports names with 0,1,2 appended underscores
— Long function names are abbreviated

— F90 module can be compiled to provide function
prototypes

91



QtViz

Open Source
Replacement for Gviz



» Gviz used to visualize grids, Suggar++
input, DCI
— Uses Motif for GUIL: no Windows version

» QtViz is a rewrite

— Hoping for similar functionality

— Using Qt for GUI

 Cross platform portability
— Linux, Mac OS X, Windows

— Improved GUI
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Hosted on GitHub
— GPL license

Project URL
— https://github.com/rwnoack/QtViz

Clone with
— git clone git@github.com:rwnoack/QtViz.git

Seeking Active contributors
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Suggar++ and Pointwise



» Currently supports PEGASUS 5 and
Suggar++

» Within pointwise
— Allows user to define inputs via GUI
* Input definition is via XML file

— Run OGA
— Visualize results
— Modify grid system

— And more... .



- Some Suggar++ input elements are not
visible in pointwise GUI

— Handled internally in pointwise

» <volume_grids>
» <boundary_surface> and content

— Not supported in pointwise
» Analytic grids

— <cartesian_grid>, <cylindrical_grid>, <spherical_grid>
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* New input definition file can be provided
with Suggar++ release

* Replace installed file or set an
environment file
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Commercial distribution and support
for Suggar++provided by

Celeritas Simulation Technology, LLC
http://www.CeleritasSimTech.com

Exportable under an EAR-99 license
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Utilities Provided With
Suggar++



* RefineGrids
— Refine structured grids by factor of 2

* DerefineGrids
— Derefine structured grids by factor of 2

» Scripts to generate a sequence of
derefined grids



Convert
— Convert between different unstructured grid formats

Mirror
— Mirror a set of structured grids and Input.xml

report_number_grids
— Output the number of component grids

cmp_dci
— Compare the DCI in two files



Suggested Work Process



- Build input in pieces
— Or use <skip> </skip> to hide complete subtrees

* Check and Indent XML file
— xmllint -format

— xmlformat.pl
— Emacs

 Visualize surfaces
— Especially solid surfaces

— Color collar surfaces differently

* Put “collar” in surface name
— <boundary_surface name="kmin-solid-collar-with-sting”>



» <boundary_surface const_coord="">
— Make sure have right value on right surface
— Look at composite grid

- Reorientation of grid blocks without
appropriate changes to input

- Manual cutting and symmetry planes
— Can cut wrong direction



» Redirect the Suggar++output
— suggar++ -reopen

» During initial testing reduce wall clock time
— suggar++ -ignore-composite-grid
— suggar++ -ignore-minimize-overlap

» Check suggar++progress during execution

— One line added at start of each stage of
execution



* We suggest putting critical input files in
directories to minimize the chance of
accidental removal

— Put all your component grid files in Grids/

— Put your input files in Input/

« Suggar++will default to read Input/Input.xml
— “suggar++ Input/Input.xml” is same as “suggar++”



- We suggest using standard scripts

— Run
- Execute Suggar++ and check for errors

— Clean
- Remove (LOTS) of files that Suggar++ can write



#!/bin/bash

STDERR=out.stderr++
$SUGGARPP OPT EXE -reopen $*

EXIT STATUS=S$?

if [[ $EXIT_STATUS != 0 ]];

then
echo "FAILURE: suggar++ has failed with exit status S$EXIT STATUS"
grep "Error:" $STDERR

exit S$EXIT STATUS
fi

if [[ -e summary zipper.log ]]; then

cat summary zipper.log >> summary.log
fi



rm

rm

rm

rm

rm

-f allgrids.p3dudl* *.dci* out* *log *gress

-f panels weights.txt Suggar++Error.backtrace
-f usurp* zipper *.flex cut elements*
-rf Work

-rf * trace *



» Look at
— summary.log

— Standard error output file
» -reopen will write to out.stderr++

* Visualize the DCI

— Look at orphans
— All blanked points

- May have flood fill leak if entire grid is blanked out



* Will present a set of DiRTIib and
LibSuggar++ function calls

* lllustrative of how few calls are required

— Not necessarily all that are required or correct
order

- Parallel execution requires conditionals so
some calls are only executed on specific
processors
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drt_set num_data_ values all grids(N)
drt_Init(PutDataValue,GetDataValue,...)
dcx_set _dci_master _rank_in_group _comm(0)
drt_rank _dci_only()

drt_rank flow_ only()

drt_pll_init(0,0)

dc_init()
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> drt_init_str_subgrid_decomposition_map()
» drt_map_str subgrid to rank(...)
 drt_end_str_subgrid_decomposition_map()

 Other calls for unstructured grids
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dc_begin_motion_input()
dc_add_motion_input(...)
dc_end_motion_input()
dc_parse _motion()
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» dc_compute_dci()
 drt_get dci()
- drt_generate_transmit_apply()

» dc_release_dci()
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