

Overset mesh for Internal Combustion Engine Simulation in STAR-CCM+

Daniel Uhlmann, Eberhard Schreck

🏛 🏹 👗 🥳 🖉 🖉 🖉

Outline

W Two-stroke engine regular Overset interface

- Geometry
- Regions
- Interface setup
- Mesh
- Physics
- Overset features
- Post-processing

Two-stroke engine with Overset ZeroGap approach

- Regions
- Interface setup
- Mesh and Physics
- Post-processing

Pro/Con Overset vs Overset ZeroGap for two-stroke engines

Four-stroke engine with Overset ZeroGap approach

- Geometry
- Regions
- Interface setup
- Mesh
- Physics
- Overset features
- Post-Processing

Two-stroke engine regular Overset interface

Geometry

Piston, connecting rod and crank web were taken from GrabCAD*. The crankcase was built in STAR-CCM+ 3D CAD.

Regions

7 regions: piston, connecting rod, crank web, crankcase, inlet, outlet, channel

Interface setup

- **4 boundary interfaces:**
 - channel crankcase
 - inlet piston
 - outlet piston
 - channel piston

6 regular Overset interfaces:

- piston crankcase
- connecting rod crankcase
- crank web crankcase
- piston crank web
- connecting rod crank web $j_{j_{\star}}$
- connecting rod piston

Overset topology - Direction: for applications where the Overset boundary does not completely enclose the overset region

Mesh

- ② 2.9m poly cells

Exact opening and closing time for the inlet and outlet flow

Mesh

Mesh motion

Dynamic Overset Behaviour

Physics

- Physics
 - Implicit unsteady
 - Ideal gas
 - Segregated flow solver
 - Realizable k-epsilon two-layer
- **Boundaries**
 - Stagnation inlet = OPa (unrealistic)
 - Pressure outlet = 0Pa (unrealistic)
- **Motion**
 - Crankweb: rotation 10,000rpm
 - Piston: translation
 - Connecting rod: superposing rotation
- **Overset interfaces**
 - Close proximity enabled
 - Interpolation: linear

Overset features

Close Proximity

- cell is deactivated only when the cell centroid is outside the boundary

- **Einear interpolation**
- **Dynamic Overset Behaviour: Active, Acceptor**
- **Overset topology: Direction**

Post-processing

Solution Time 2e-05 (s)

Two-stroke engine with Overset ZeroGap approach

Regions

4 regions: piston, connecting rod, crank web, crankcase

red marks Overset boundary

Interface setup

- **1** Overset ZeroGap interface: A
 - piston crankcase
- **5 regular Overset interfaces:**
 - connecting rod crankcase
 - crank web crankcase
 - piston- crank web

• Properties

Close Proximity

Region-0 Region-1

Verbosity

Туре

Tags

- connecting rod crank web
- connecting rod piston

STAR-CCM+

ZX

Mesh and Physics

- ③ 3.3m poly cells
- **5 prism layers**

ZeroGap walls can have an influence on the opening and closing time for the inlet and outlet flow

Mesh and Physics

Physics are identical to the previous case

Post-processing

Pro/Con Overset vs Overset ZeroGap

- **Pro Overset ZeroGap:**
 - Less interfaces
 - Piston-crankcase penetration allowed
- **Con Overset ZeroGap:**
 - Incorrect opening and closing time of the inlet and outlet
 - More cells required
- **Pro regular Overset interface:**
 - Correct opening and closing time of the inlet and outlet
 - Less cells required
- **Con regular Overset interface:**
 - More interfaces
 - Piston-crankcase penetration not possible

Four-stroke engine with Overset ZeroGap approach

Geometry

Generic 4-stroke geometry*

*Courtesy of Simon Fischer, CD-adapco

Regions

4 regions: piston, engine, exhaust valve, intake valve

Interface setup

4 regular Overset interfaces:

- engine fluid piston
- piston intake valve
- piston exhaust valve
- intake valve exhaust valve

② 2 Overset ZeroGap interfaces:

- engine fluid intake valve
- engine fluid exhaust valve

Mesh

3.6m cells

5 prism layers in ZeroGap area (otherwise 3 prism layers)

Mesh

Mesh motion

ZeroGap wall

Physics

Physics

- Implicit unsteady
- Ideal gas
- Segregated flow solver
- Realizable k-epsilon two-layer
- **Boundaries**
 - Stagnation inlet (unrealistic)
 - Pressure outlet (unrealistic)
- Motion
 - Engine RPM 3600
 - Piston, intake/exhaust valve:
 User Defined Vertex Motion
- Overset interfaces
 - Close proximity enabled
 - Alternate hole cutting enabled
 - Interpolation: distance weighted

Overset features

Close Proximity

 cell is deactivated only when the cell centroid is outside the boundary

Alternate Hole Cutting

 determines whether the global or the layered hole-cutting approach is used

🔶 🚞 Inf	terfaces	
- 🖕 🌖	1: Overset interface between: er	ngine-fluid and cylinder-fluid: overset
- o o 2: Overset interface between: cylinder-fluid: overset and intake-valve 1: ov		
🔶 🍵 3: Overset interface between: cylinder-fluid: overset and exhaust-valve 1: 🤇		
🖕 🌖 4: Overset interface between: intake-valve 1: overset and exhaust-valve 1:		
👷 🌖 5: ZeroGap overset interface between: engine-fluid and intake-valve 1: ove		
6	📄 Physics Conditions	
o- 🌒	6: ZeroGap overset interface be	tween: engine-fluid and exhaust-valve 1: o 🖵
4		
5: ZeroG	ap overset interface between: eng	gine-fluid and intake-valve 1: over ×
5: ZeroG	ap overset interface between: eng	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0	ap overset interface between: eng rties	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0 Region-1	ap overset interface between: eng rties	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0 Region-1 Verbosity	ap overset interface between: en rties	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0 Region-1 Verbosity Close Pro	ap overset interface between: eng rties ×imity	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0 Region-1 Verbosity Close Pro Alternate	ap overset interface between: en rties ×imity Hole Cutting	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0 Region-1 Verbosity Close Pro Alternate Treat Error	ap overset interface between: en rties ximity Hole Cutting pr as Warning	gine-fluid and intake-valve 1: over ×
5: ZeroG Proper Region-0 Region-1 Verbosity Close Pro Alternate Treat Erro Type	ap overset interface between: en rties ximity Hole Cutting pr as Warning	gine-fluid and intake-valve 1: over ×

 for applications where a piston moves within a cylinder. The cells underneath the piston are deactivated

Post-processing

Note: This is a generic geometry. We do not apply realistic boundary conditions.

Thank you!

Questions?

