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Conservation Law Based  Update Schemes 
• In this talk convergence to a weak solution under grid refinement is 
demonstrated for a class of overset grid schemes based on higher 
order Flux Reconstruction (FR) as well as MUSCL schemes 
• The method is based on enforcing the conservation laws on a cell-
wise basis rather than the traditional approaches involving 
interpolation 
• Sources of conservation error are clearly identified 
• Consider the following conservation law 
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Conservation Law Based Update Schemes 
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• In order to solve this equation numerically on a single grid, the 
domain is partitioned into discrete cells  
 

• The variable q is averaged over cell j as follows 
 
 
 

 
•The value of the cell averaged variable     in cell Ω𝑗 is updated as 
follows 
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MUSCL Reconstruction 
 
• Here ql, qr  are the values of q reconstructed from the cell averages  
    and evaluated at the cell interfaces using the MUSCL procedure 
and F  is a numerical flux function (Roe, Lax–Friedrichs, etc.)   
 
 
 
 
 
 
 
 

 
• Extension to higher order in multiple dimensions requires large 

stencil sizes.  This is impractical for overset grids.   
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Flux Reconstruction1,2 
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Discontinuous Solution 

• The solution in each cell is approximated by K pieces of data 
• A K-1 order polynomial is used to fit the data. 
•        and          are defined by extrapolating the polynomials to the cell faces 

1. Huynh, H. T. "A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods." AIAA paper 4079 (2007): 2007. 
2. A Novel Approach for Shock Capturing in Unstructured High-Order Methods, by Abhishek Sheshadri, Stanford University 

1+kql

1+kqr

1+kql 1+kqr

http://www.nas.nasa.gov/publications/ams/2016/07-07-16.html


Flux Reconstruction 
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Discontinuous Flux 

• A K-1 order polynomial is used to approximate the flux function 



Flux Reconstruction 
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( )11, ++ kk qrqlF

Discontinuous Flux 

•      and           are used to define an upwind flux at the face 1+kql 1+kqr



Flux Reconstruction 
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Continuous Flux 

• Correction polynomials are used to create a continuous Kth order flux approximation F 

𝑑𝑞𝑗,𝑘

𝑑𝑑 = 𝐹𝑥 𝑗,𝑘 • The continuous flux polynomial is used to time advance the variables  



Conservation Law Based Update Schemes 
• What is the “best” way to extend these approaches to cases of 
multiple overlapping grids? 
 

•Rather than interpolate variables or fluxes seek alternate formulation 
 

•Use data from both grids to reconstruct interface states 
 
•Consider two grids with some small amount of overlap 
 

1 2 3 4 

np-3 np-2 np-1 np 

9 

OVERLAP REGION GRID 1 GRID 2 
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Conservation Law Based Update Schemes 
•Let the value of the cell averaged variable in cell j of grid 1 be denoted 
as      , and the cell centroid value of cell j be denoted as        etc 
 

•Let the left and right interface states at face k of grid 1 be denoted as 
         and          respectively 
 
•Let the face centroid of  face k of grid 1 be denoted as 
 respectively 
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Conservation Law Based Update Schemes 
• Consider computing the cell interface states            and         as follows 

• The states are computed by constructing a least squares 
monotonically limited approximation to the solution gradient in 
cell np from mesh 1 using the cells below and then extrapolating q 
to the cell faces using this gradient 
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np 1 2 

Conservation Law Based Update Schemes 
• Consider computing the cell interface states            and         as follows 

• The states are computed by constructing a least squares 
monotonically limited approximation to the solution gradient in 
cell 1 from mesh 2 using the cells below and then extrapolating q 
to the cell faces using this gradient 

( )
( )2

1
2
      1

2
1

2
1

2
      1

2
1

1
1

2
1

2
1

1
1

xcxfqqqr
xcxfqqqr npnp

−•∇+=
−•∇+= ++

1
1+npqr 2

1qr
1

1+npqr
2

1qr

12 2016 Overset Grid Syposium 



Data Exchange for Flux Reconstruction 
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1. Galbraith, M. C., A Discontinuous Galerkin Overset Solver, Ph.D. thesis, University of Cincinnati, 2013. 
 

2. Crabill, J., Jameson, A. and Sitaraman, J.: A High-Order Overset Method on Moving and Deforming Grids. AIAA 2016-3225, AIAA Aviation, 

AIAA Modeling and Simulation Technologies Conference, 13-17 June 2016, Washington, DC. 

1
1+npqr

2
1ql

1. Extrapolate          from boundary cell solution polynomial 
2. Interpolate           from donor cell solution polynomial 
3. Compute upwind flux  
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Data Exchange for Flux Reconstruction 
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1. Galbraith, M. C., A Discontinuous Galerkin Overset Solver, Ph.D. thesis, University of Cincinnati, 2013. 
 

2. Crabill, J., Jameson, A. and Sitaraman, J.: A High-Order Overset Method on Moving and Deforming Grids. AIAA 2016-3225, AIAA Aviation, 

AIAA Modeling and Simulation Technologies Conference, 13-17 June 2016, Washington, DC. 
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•A consistent and convergent scheme should be achieved as grid 
refinement is performed if the distance between the cells centers used 
in the reconstructions approach zero under grid refinement, i.e.                            
  
 
 
 
 
 

 
•Here TV is the total variation 
 

•A similar argument holds for meshes with small gaps between the grids 
 

•The basic argument remains unchanged in the case of general overlap  

Conservation Law Based  Update Schemes 
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Generalized Lax-Wendroff Theorem 
 
 

• Recall that a function q(x,t) is considered to be a weak solution 
to the conservation law 

If for any compact, differentiable function φ(x,t) the following 
integrals are satisfied1   
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1. LeVeque, Randall J., and Randall J. Leveque. Numerical methods for conservation laws. Vol. 132. Basel: Birkhäuser, 1992. 
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Generalized Lax-Wendroff Theorem 
 
 

• In order to demonstrate that these integrals are satisfied for the 
proposed method, first multiply the cell average update 
equation by               for mesh 1, etc.  

• Next sum over j and n for each mesh as follows   

( )nj tx ,1φ
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Generalized Lax-Wendroff Theorem 
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• The following summation by parts formula is useful for the 
proving convergence of the proposed scheme to a weak solution 
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Generalized Lax-Wendroff Theorem 
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• For the LHS use the SPB formula on the n sum  
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• Note that these terms are discrete approximations to the 
following integrals 
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Generalized Lax-Wendroff Theorem 
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• For the RHS use the SPB formula on the j sum  

End Terms from SBP Formula 
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Generalized Lax-Wendroff Theorem 
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• The end terms at the grid interface become  
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Generalized Lax-Wendroff Theorem 
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• We can show that ΔF12 → 0 as Δx → 0 as follows  
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• Given that 

it follows that 

F is Lipschitz Continuous 
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Generalized Lax-Wendroff Theorem 
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• Note that these terms are discrete approximations to the 
following integrals  
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and the integral conservation law is satisfied under the same 
caveats invoked for the single grid case     
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Observations Based on Lax-Wendroff Theorem (1) 
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• If standard linear interpolation methods are used then no 
GENERAL bounds may be established a priori for the ΔF12 term 
 

• We end up with a source term in the integral conservation law 
which MAY not vanish under grid refinement in the presence of 
discontinuous solutions. 
 
 

 
 

• These source terms become ODEs along characteristics and 
may globally pollute the solution 
 Corrupt convergence rates 
 Generate spurious waves 
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Observations Based on Lax-Wendroff Theorem (2) 
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•These terms can and will corrupt solutions when: 
• Severe mismatches in cell sizes exist 
• Strong discontinuities exist in the grid interface 
region 
• Slow moving discontinuities exist in the grid 
interface region 
• All three exist simultaneously! 
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•Shock capturing schemes needed to control TV(q) 
 

• Follow Zang and Shu.1 
 

• Let  𝑞 𝐾
𝑁 be the solution points in cell Ω𝑁      

 
•Use a discontinuity detector θ based on cell average 
values to control oscillations as follows: 
• Here we use Nichols discontinuity dector2 

• One can also use the TVB filters of Engquist, et al3 

FR Shock Capturing Considerations 
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𝑞 𝐾
𝑁 →  𝜃 𝑞 𝐾

𝑁 − 𝑞� + 𝑞� 

1. Zhang, Xiangxiong, and Chi-Wang Shu. "On maximum-principle-satisfying high order schemes for scalar conservation laws." Journal of Computational Physics 
229.9 (2010): 3091-3120. 

2. Tramel, Robert W., Robert H. Nichols, and Pieter G. Buning. "Addition of improved shock-capturing schemes to OVERFLOW 2.1." AIAA Paper 3988 (2009): 2009. 
3. Engquist, Björn, Per Lötstedt, and Björn Sjögreen. "Nonlinear filters for efficient shock computation." Mathematics of Computation 52.186 (1989): 509-537. 
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Sample Cases 
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• Shock Wave Formation in Burgers Equation 
 
• Shock Propagation in Burgers Equation 
 
• K=5 
• Cells overlap 1/8 ΔX 
• Shock location lies in the overset region 
• Use global Lax-Friedrichs flux 
• Use Gauss points and weights and Radau 

correction polynomials 
• “Exact” solution for shock formation is a 4000 point 

solution using a 5th order WENO-RBF method  

𝑞 𝑥, 0 = sin (𝑥)  

𝑞 𝑥, 0 = H (− 𝑥 − 𝑥𝑜 )  



No Shock Treatment 
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Internal Cell Variables Cell Averages 






No Shock Treatment 
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Comparison With Exact Solution 



Dissipation Switch 
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Internal Cell Variables Cell Averages 






Dissipation Switch 

2016 Overset Grid Syposium 31 

Comparison With Exact Solution 



Discontinuity Detector 
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Cell Number 

θ 



TVB Filter 
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Internal Cell Variables Cell Averages 






TVB Filter 
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Comparison With Exact Solution 



No Shock Treatment 
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Internal Cell Variables Cell Averages 






Dissipation Switch 
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Internal Cell Variables Cell Averages 






TVB Filter 
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Internal Cell Variables Cell Averages 






Discontinuity Detector 
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Conclusions 
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•  Within the context of this framework strict lack of conservation 
becomes merely another source of numerical error to be removed 
by grid refinement 
 

•  Convergence to a weak solution is guaranteed as grid 
independence is achieved 
 

•  MUSCL/WENO/RBF schemes can be mixed with Flux Reconstruction 
schemes 
 

• Framework seamlessly blends block matching/overset grid grids  

2016 Overset Grid Syposium 



ACKNOWLEDGEMENTS 

40 

• Thanks to  
• Dr. Randy Leveque (U Wash) 
• Dr. John Benek (AFRL/RBAC) 

for discussions and careful reading of earlier 
versions of this presentation 

2016 Overset Grid Syposium 



That’s All Folks 
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• Questions 
• Constructive Criticism  
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