Recent Developments in PDE Solvers using Overture

Bill Henshaw

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA.

13th Symposium on Overset Composite Grids and Solution Technology, Future of Flight Aviation Center, Mukilteo, Washington, October 17–20, 2016.

Acknowledgments.

Collaborators:

Jeff Banks (RPI)

Kyle Chand (LLNL)

Lonafei Li (Post-doc, RPI)

Don Schwendeman (RPI)

Qi Tang (Post-doc, RPI)

RPI graduate students:

Jordan Angel, John Jacangelo,

Fanlong Meng,

Eddie Rusu.

Dan Serino

Supported by:

National Science Foundation, RPI, LLNL. Department of Energy, Office of Science, ASCR Applied Math Program.

- fluid-structure interactions
- conjugate heat transfer
- upwind schemes for Maxwell's equations

The Overture framework and Composite Grid (CG) PDE solvers are open source and available from (documentation, downloads)

overtureFramework.org

The source-code repositories are hosted at

sourceforge.net/projects/overtureframework

Monolithic vs Partitioned Schemes

Objective: Choose the solid BC and fluid BC so the partitioned scheme is stable and accurate.

Fluid Structure Interaction (FSI) algorithms

Our approach in Overture is based on deforming composite grids.

Approach:

- Fluids are solved in an Eulerian frame.
- Solids are solved in a Lagrangian frame.
- Deforming interface grids are regenerated at each time-step with the hyperbolic grid generator.

- HyperbolicMapping hyperbolic component grid generator (to recompute grids next to deforming surfaces).
- Ogen grid generator overset grid generator (compute connectivity).
- Fluid solver (e.g. Cgcns, Cgins).
- Solid Solver (e.g. Cgsm, BeamSolver, ...)
- Multi-physics, multi-domain driver program (Cgmp)

1: procedure solveFsiDcg(\mathcal{G} , t_{final}) Input: initial composite grid and final time 2: t := 0: n := 0: $G^n = G$: 3: assignInitialConditions($\mathbf{q}_{i}^{n}, \bar{\mathbf{q}}_{i}^{n}, \mathcal{G}^{n}$); 4: while $t < t_{\text{final}}$ do 5: $\Delta t := \text{computeTimeStep}(\mathbf{q}_{i}^{n}, \bar{\mathbf{q}}_{i}^{n}, \mathcal{G}^{n});$ 6: $\mathcal{G}^{p} := \text{moveGrids}(\mathcal{G}^{n}, \mathbf{q}_{i}^{n}, \bar{\mathbf{q}}_{i}^{n});$ ▷ (calls HyperbolicMapping) 7: $\mathcal{G}^{p} := updateOverlappingGrid(\mathcal{G}^{p});$ ▷ (Ogen) 8: $\mathbf{q}_{i}^{n+1} := \operatorname{advanceFluid}(\mathbf{q}_{i}^{n}, \mathcal{G}^{n}, \mathcal{G}^{p}, \Delta t);$ $\bar{\mathbf{q}}_{\mathbf{i}}^{n+1} := \operatorname{advanceSolid}(\bar{\mathbf{q}}_{\mathbf{i}}^{n}, \mathcal{G}, \Delta t);$ 9: $(\mathbf{n}^{T}\mathbf{v}^{\prime},\mathbf{n}^{T}\boldsymbol{\sigma}^{\prime}) := \text{projectInterface}(\mathbf{q}_{i}^{n+1},\bar{\mathbf{q}}_{i}^{n+1},\mathcal{G}^{p});$ 10: $\mathbf{q}_{i}^{n+1} := \operatorname{applyFluidBCs}(\mathbf{q}_{i}^{n+1}, \mathcal{G}^{p}, \mathbf{n}^{T}\mathbf{v}^{l}, \mathbf{n}^{T}\boldsymbol{\sigma}^{l});$ 11: $\bar{\mathbf{q}}_{i}^{n+1} := \operatorname{applySolidBCs}(\bar{\mathbf{q}}_{i}^{n+1}, \mathcal{G}, \mathbf{n}^{T}\mathbf{v}^{\prime}, \mathbf{n}^{T}\boldsymbol{\sigma}^{\prime});$ 12: $\mathcal{G}^{n+1} := \operatorname{correctMovingGrids}(\mathbf{q}_{i}^{n+1}, \bar{\mathbf{q}}_{i}^{n+1}, \mathcal{G}^{p}, \Delta t);$ 13: 14. $t := t + \Delta t; \quad n := n + 1;$ 15: end while 16: end procedure

Deforming grid example

Incompressible flow past a beam

/Users/henshaw/movies/beamInChannelGrid.mp4

Henshaw (RPI)

Deforming grid example

Compressible flow past two elastic disks

Overture commands for a deforming grid simulation

```
1
     PlotStuff ps(plotOption, "deform"); // for plotting
2
 3
     CompositeGrid caNew, caOld; // overset arids
4
5
6
7
     Ogen ogen(ps); // overset grid generator
     HyperbolicMapping hyper; // Hyperbolic grid generator
8
9
     // Supply a new surface grid:
10
     NurbsMapping surface;
11
     hyper.setSurface(surface, isSurfaceGrid, init);
12
13
     // generate hyperbolic volume grid
14
     hvper.generate():
15
16
     // Generate overset grid connectivity
17
     ogen.updateOverlap(cgNew, cgOld, hasMoved, option);
18
19
     realCompositeGridFunction u(cgNew); // grid function
20
21
     PlotIt::contour(ps,u); // contour and surface plots
```

Compressible flow + beam

Compressible flow + nonlinear elastic solid

Impedance weighted interface conditions provide stability for light solids

• J.W. Banks, WDH, A.K. Kapila, D.W. Schwendeman, *An Added-Mass Partitioned Algorithm for Fluid-Structure Interactions of Compressible Fluids and Nonlinear Solids*, J. Comput. Phys. (2016).

Shock impacting an elliptical solid

Grid convergence

AMP scheme for incompressible flow + beam-model Fluid structure interactions

- A pressure-velocity formulation of the incompressible flow equations are solved with a second-order fractional-step scheme.
- 2 A special Robin (mixed) interface condition on the pressure is used.
- Resulting partitioned scheme is stable and accurate with no sub-time-step iterations.

Two deformable beams in an incompressible flow.

J.W. Banks, WDH, D.W. Schwendeman, An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells, J. Comput. Phys. (2014).
Longfei Li, J.W. Banks, WDH, D.W. Schwendeman, A stable partitioned FSI algorithm for incompressible flow and deforming beams, J. Comput. Phys. (2016).

Incompressible flow plus light deforming beams

AMP algorithm is stable for light beams with no sub-iterations

Two beams

/Users/henshaw/movies/twoBeamsInAChannelRhos1E10.m

Partitioned schemes for light bodies become unstable.

- under-relaxed sub-iterations can be used to stabilize the problem
- sub-iterations are expensive, more required as bodies get lighter.

The new AMP scheme requires no sub-iterations.

- treats added-mass effects (from pressure forces on the body)
- treats added-damping effects (from viscous shear forces)

Added-mass and added-damping

Added-mass: mass of fluid moved when a force is applied to the body Added-damping: drag on the body when a force is applied (depends on δt)

Light rigid body rising in a counter-flow

Important to address both added-mass and added-damping.

$$\nu = .01, \, \rho = 1, \, \bar{\rho} = 0.1, \, R_d = 0.5, \, V_{\rm in} = -2.4$$

Henshaw (RPI)

Conjugate heat transfer: Coupled heat transfer between fluids and solids.

Partitioned schemes: Implicit time-stepping for temperature in each domain.

- Practical problem: Depending on the material properties (thermal conductivity, thermal diffusivity) traditional interface conditions may fail or require many sub-iterations per time step.
 - CHAMP: accurate and stable interface conditions with no sub-iterations for most practical problems.

CHAMP interface conditions combine:

- optimized-Schwartz algorithms: Robin (mixed) conditions.
- compatibility conditions derived from govering equations.

• J.W. Banks, WDH, A.K. Kapila, D.W. Schwendeman, *An Added-Mass Partitioned Algorithm for Fluid-Structure Interactions of Compressible Fluids and Nonlinear Solids*, J. Comput. Phys. (2016).

CHAMP: conjugate heat transfer results

Reactor fuel assembly

Upwind schemes for Maxwell's equations in second-order form

High-order accurate upwind schemes are stable on overset grids

Maxwell's equations as a second-order wave equation (SOWE)

$$\frac{\partial^2 \mathbf{E}}{\partial t^2} = c^2 \Delta \mathbf{E}$$

- traditional schemes for the SOWE require artificial dissipation
- choosing the coefficient of dissipation is tricky on overset grids
- thin boundary layer grids require more dissipation
- new upwind schemes automatically add dissipation
- schemes can be any order of accuracy
- analysis confirms stability on overset grids
- numerical results confirm the accuracy and stability

Scattering from a buried rectangular body

Electromagnetic scattered field E_x from a chirped incident plane-wave pulse

