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In recent work we have focused on large deformation and/or displacement
FS| using partitioned solvers
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 Component solvers remain independent
* can use existing solvers
* no need to solve (or precondition) a coupled implicit system

e Can naturally take advantage of disparate time scales
* e.g. mixing implicit and explicit integration

* High levels of algorithmic concurrency
* maps well to modern and emerging computers
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Traditional partitioned schemes have suffered from “‘added-mass instabilities”
for solids which are sufficiently light when compared to the fluid

* Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006)
1. advance fluid (using interface velocity/displacement from the solid)
2. advance solid (apply fluid forces to the solid)
3. possibly iterate with under-relaxation to convergence
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* Some analysis of added-mass instabilities can be found in the literature, for example
e Causin, Grebeau, and Nobile, 2005 (stability with relaxation)
* Gretarsson, Kwatra, and Fedkiw 2011 (semi-monolithic formulations)



The origin of added-mass instabilities is that the effect of displaced fluid is not
appropriately accounted for in the numerical algorithms
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As a concrete motivating example consider a rising rigid body in counterflow

* Incompressible Navier-Stokes

* Light rigid body
flow l @




This case has both strong added-mass and added-damping effects

Added Mass Added Damping
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* Added mass relates to increased apparent mass owing to fluid displacement

* i.e. the local geometry occupied by solid changes

* Added damping relates to increased apparent inertia owing to viscous fluid drag

* i.e. the local geometry remains fixed



To understand these effects in isolation we derive extremely simple models by
localizing and linearizing the problem near the interface

e y-translations relate to added-mass effects

e x-translations relate to added-damping effects



The resulting model is used to motivate our new AMP algorithms and discuss
the performance of traditional partitioned (TP) schemes
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An added-mass model problem is derived by considering vertical motions
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e The AMP scheme matches the vertical accelerations at the interface
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* And applies a generalized Robin condition to the fluid pressure equation
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The resulting AMP scheme is stable for any finite mass, while the traditional
scheme suffers

* The added mass for this problem is easily identified as

M, = pLH

* Thm: The 2nd order accurate AMP scheme for the added-mass model problem is stable
provided my + M, is bounded away from zero.

e Thm: The 2nd order traditional partitioned scheme is stable if and only if M, > M,



An added-damping model problem is derived by considering horizontal motions
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* The AMP scheme uses the exact solution to form the discrete approximation
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here § is a ratio of viscous length scales, and D is an added-damping coefficient (in 3D these
become added-damping tensors)



The AMP scheme with extra velocity projection is stable even for
massless bodies
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The AMP-RB scheme is implemented in Overture and is found to be stable
against both added-mass and added damping instabilities without iteration




By comparison, the traditional partitioned scheme requires ~85 under-relaxed

iterations to provide comparable results
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A more challenging case is that of a light cylinder rising in counterflow

* The AMP-RB scheme is again stable without any iteration

* Traditional partitioned scheme needs ~2000 sub iterations to stabilize
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A more challenging case is that of a light cylinder rising in counterflow

Py — .001

flow




Extensions to multiple bodies presents no particular challenges, and the scheme
is robust even in the presence of both light and heavy bodies
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Summary

e Careful analysis of simplified model problems motivates our stable and 2nd order accurate
AMP-RB scheme for incompressible flows

e Stability analysis in simple geometries shows excellent stability properties even in the un-
iterated form

* Implementation within Overture illustrates the utility of the approach for both light and
heavy bodies

Future Work

* implement in 3D

* investigate the alternate added-mass potential formulation

* New FSI regimes (incompressible/incompressible, compressible/beams)



