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In recent work we have focused on large deformation and/or displacement 
FSI using partitioned solvers

• Component solvers remain independent 
• can use existing solvers 
• no need to solve (or precondition) a coupled implicit system 

• Can naturally take advantage of disparate time scales 
• e.g. mixing implicit and explicit integration 

• High levels of algorithmic concurrency 
• maps well to modern and emerging computers
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• Traditional partitioned FSI algorithms (Cirak, et. al. 2007, Bungartz and Schafer 2006) 
1. advance fluid (using interface velocity/displacement from the solid) 
2. advance solid (apply fluid forces to the solid) 
3. possibly iterate with under-relaxation to convergence 

• Some analysis of added-mass instabilities can be found in the literature, for example 
• Causin, Grebeau, and Nobile, 2005 (stability with relaxation) 
• Gretarsson, Kwatra, and Fedkiw 2011 (semi-monolithic formulations)

Traditional partitioned schemes have suffered from “added-mass instabilities” 
for solids which are sufficiently light when compared to the fluid

2 PRACTICES AND PERILS IN MULTIPHYSICS APPLICATIONS

2.1.1 Interaction of fluids and structures

Numerical simulations that model interaction between incompressible laminar flows and elastic structures require
coupling a description of the fluid—typically the incompressible Navier-Stokes equations or a weakly compress-
ible lattice-Boltzmann equation—with a description of the structures. Sample application areas for this scenario
include blood flow in arteriae, veins, and heart chambers; low Mach number aerodynamics; marine propellers; and
hydroelectric power plants. The unknowns of the involved equations—velocities and pressure for the fluid, dis-
placements for the structure—are associated with different locations in the overall computational domain, resulting
in a surface-coupled problem.

Fluid–structure interaction (FSI) can be simulated in at least two ways. One approach is to solve a large system
of equations for all fluid and structure unknowns as a single system—typically ill-conditioned. Alternatively, in
a partitioned approach, one has separate solvers for the fluid and the structure, together with a suitable coupling
method. In the latter case, boundary conditions for both single physics problems at the coupling surface have to be
defined. The respective interface values are passed from one solver to the other. This approach requires mapping
methods for physical variables between (in general) nonmatching solver grids at coupling surfaces. Important
features desired of such mappings are accuracy, consistency, and conservation of energy and momentum. Two
main classes of mapping methods can be identified: interpolation methods (Farhat et al., 1998b; de Boer et al.,
2007; Jaiman et al., 2006; Bungartz et al., 2010; Scholz et al., 2006), based on geometric relations between the
involved grid points, and mortar methods, in which boundary conditions are formulated in weak form by using
Lagrange multipliers (Farhat et al., 1998b; Baaijens, 2001; Klöppel et al., 2011; Ross, 2006).

The coupling itself can be done with different methods, leading to looser or more tightly coupled timestep-
ping methods; see Figure 2 for two variants. The loosest coupling is a one-way coupling, where the flow solver
computes a force exerted on the structure using a rigid-structure geometry, and structural movements are com-
puted in a postprocessing-like manner based on these forces. This strategy is obviously applicable only for small
and static structure deformations. The most widely used class of iteration schemes is Gauss-Seidel-like coupling
iterations (see Algorithm 1), with variants ranging from a single iteration loop per timestep to repeated iteration-
to-convergence within each timestep, with or without (Aitken) underrelaxation (Irons and Tuck, 1969; Schäfer
et al., 2010; Wall et al., 2001), to interface quasi-Newton methods that efficiently compute approximate Newton
iterations based on sensitivities resulting from Gauss-Seidel iterations (Degroote et al., 2009). To account for what
are usually moderately different timescales in the fluid and the structure, a subcycling in the flow solver can be
used. In the absence of turbulence, spatial scales are essentially the same throughout fluid and structure domains.

The choice of coupling implementation can lead to development of numerical instabilities in multiphysics
codes. For incompressible fluids, the so-called added-mass effect induces instabilities in loosely coupled simula-
tions and in Gauss-Seidel-like iterations: the force exerted by the fluid on a moving structure can be interpreted
as a virtual added mass (see, e.g., (van Brummelen, 2009)) of the structure. For an incompressible flow, each
acceleration or deceleration of the structure causes an immediate change in this added mass (whereas the added
mass change for a compressible flow increases continuously over time). If this change is too large, both loosely
and tightly coupled Gauss-Seidel-like coupling schemes become unconditionally unstable; in other words, a re-
duction of the timestep does not cure the instability (van Brummelen, 2010). In the case of a massless structure,
a reduction of the timestep even worsens instabilities (Degroote et al., 2009). Typically, only a few low-frequency
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Figure 2: One-way and Gauss-Seidel-like coupling strategies for fluid-structure interaction simulations.
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As a concrete motivating example consider a rising rigid body in counterflow

• Incompressible Navier-Stokes 
• Light rigid body 

flow



This case has both strong added-mass and added-damping effects

1. Introduction

In this work, we consider the fluid-structure interaction (FSI) problems that involve the motion of rigid
bodies within an incompressible fluid. These FSI problems are very useful in a wide variety of applications.
Examples include diagnosing industrial problems involving particulate flows, understanding segregation pat-
tens during the industrial solidification, studying sedimentation in geology, or designing watercraft and
aircraft.

other applications
Flows of finite-sized particles in viscous fluids are common to many industrial as well as natural processes,

such as primary cementing in the oil and gas industry (Nelson and Guillot, 2006) and blood flow (Bagchi,
2007).

Nowadays several engineering and scientific applications require extensive use of FluidStructure Interac-
tion (FSI) analysis. Energy generation, ship maneuvering, o↵shore oil platforms, buoy structures, are some
of the applications in the field of ocean engineering. FSI is also applied in other areas, like aeronautics,
hydraulics, automotive, and many other fields.

in biological locomotion, particularly exemplified by swimming of aquatic organisms or flight with flexible
wings; in biomedical flows, such as those in the cardiovascular or pulmonary systems; and in transport of
passive (or active) particles, as in suspensions or sedimentary flows.

(FSI) problems with moving valves are popular in biomedical applications where the simula- tion of the
flow in the heart during the cardiac cycle is one of the goals to be achieved.

problems in nano mechanics and biology are suc- cessfully solved: nanowire alignment [17,18], rheology
of red blood cell [19], and the other applications [20,21] in biology.

Fluid structure interaction (FSI) problems are encountered in a wide range of engineering areas, including,
among others, aeronautical engineering, coastal engineering, and biomedical engineering. FSI problems of
practical interest often involve multiple 3D immersed bodies with complex geometry undergoing very large
structural displacements and inducing very complex flow phenomena. Consider for example a bileaflet
mechanical heart valve (BMHV), which is currently the most widely implanted prosthesis for replacing dis-
eased natural heart valves.

Various techniques of the treatment of moving geometries have been applied to simulate such FSI prob-
lems. These includes the arbitrary Lagrangian–Eulerian (ALE) method [1, 2], the level-set method [3, 4], the
fictitious domain method [5–7], the embedded boundary method [8] and the immersed boundary methods
[9–21]. In those numerical schemes, a variety of coupling strategies between rigid body and incompressible
fluids are proposed.
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Figure 1: Cartoon illustrating the origin of added-mass and added-damping. Left: a force applied to a rigid-body
immersed in an incompressible fluid will accelerate some volume of fluid whose mass, the added-mass denoted by Ma,
contributes to the e↵ective mass of the body. Right: as a result of viscous e↵ects, a torque applied to a rigid-disk
will, over a time interval �t, drag a boundary-layer of fluid of approximate width �n ⇡

p
⌫ �t: this leads to an

added-damping drag on the disk. Neglecting to take account of added-mass and added-damping e↵ects can lead to
instabilities in partitioned numerical schemes.

3

• Added mass relates to increased apparent mass owing to fluid displacement  

• i.e. the local geometry occupied by solid changes 

• Added damping relates to increased apparent inertia owing to viscous fluid drag 

• i.e. the local geometry remains fixed

Added Mass Added Damping



To understand these effects in isolation we derive extremely simple models by 
localizing and linearizing the problem near the interface

Figure 2: Prototypical added-mass and added-damping problems are derived from localizing the problem on the left
near the boundary of the rigid-body. This leads to the simplified rectangular-geometry problem on the right for which
added-mass e↵ects arise due to vertical motions while added-damping e↵ects arise from horizontal translations.

FSI model problem for this configuration, we employ a standard mathematical technique and consider a
PDE boundary-value problem in a local region near the curved boundary and transform this region to a
half plane problem. The transformed half-plane problem is then linearized, the coe�cients are frozen, and
the lower-order terms are dropped. The result is a model that consists of a rectangular body in the lower
half-plane adjacent to an incompressible fluid in the upper-half plane, as shown in the right side of Figure 2.
For this FSI problem, added-mass e↵ects arise from a vertical acceleration of the body while added-damping
e↵ects occur from a horizontal acceleration. The problem can be simplified further by considering a finite
domain and assuming, for example, periodic boundary conditions for the fluid in the horizontal direction
and a boundary condition for velocity or pressure of the fluid at a height H in the vertical direction.

Following the prescription outlined above, we consider a model FSI problem in which the fluid occupies
the rectangular domain, ⌦ = [0, L]⇥[0, H] with coordinates x = [x, y]T , and lies above a rigid-body occupying
the region ⌦b = [0, L] ⇥ [�H̄, 0], see Figure 3. The fluid in ⌦ has velocity, v(x, t) = [u(x, t), v(x, t)]T , and
pressure, p(x, t), and is taken to be viscous and incompressible. It is assumed that the rigid body undergoes
small displacements in the x or y-direction, but does not rotate, and that the interface separating the fluid
and the rigid body is linearized about the fixed portion of the x-axis given by �b = [0, L]⇥{0}. The velocity
and acceleration of the body are denoted by vb(t) = [ub(t), vb(t)]T and v̇b(t) = ab(t) = [au(t), av(t)]T ,
respectively, and the motion of the body is connected to that of the fluid by conditions on velocity and stress
along �b. The full set of equations governing the model problem are

Fluid: ⇢
@v

@t
+rp = µ�v, x 2 ⌦, (1)

r · v = 0, x 2 ⌦, (2)

Rigid body: mb au =

Z L

0
µ
@u

@y
(x, 0, t) dx+ gu(t), (3)

mb av = �
Z L

0
p(x, 0, t) dx+ gv(t), (4)

Interface: v(x, 0, t) = vb(t), x 2 [0, L], (5)

Top fluid BCs: u(x,H, t) = uH(x, t), x 2 [0, L], (6)

p(x,H, t) = pH(x, t), x 2 [0, L], (7)

Side fluid BCs: v(0, y, t) = v(L, y, t), y 2 [0, H]. (8)

Here, ⇢ is the constant fluid density, µ is the constant fluid viscosity, mb is the mass of the rigid body, and
gu(t) and gv(t) are external forces on the rigid body in the horizontal and vertical directions, respectively.
These equations are augmented with appropriate initial conditions.
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• y-translations relate to added-mass effects  

• x-translations relate to added-damping effects



The resulting model is used to motivate our new AMP algorithms and discuss 
the performance of traditional partitioned (TP) schemes

rigid body: ⌦b

fluid: ⌦

interface: �b

y = 0

x = 0 x = L
y = �H̄

y = H

Figure 3: The geometry for the rectangular geometry FSI model problems.

An elliptic equation for the fluid pressure can be derived by taking the divergence of the momentum
equation in (1) and using the continuity equation in (2) to give

�p= 0, x 2 ⌦. (9)

In the velocity-pressure form of the Stokes equations, the momentum equation for the velocity in (1) is used
with the Laplace equation for the pressure in (9) instead of the divergence equation in (2).

To retain consistency with the original velocity-divergence form of the equations, zero divergence is
specified as an additional boundary condition, i.e. r · v = 0 for x 2 @⌦, see [23] for additional details. In
the discussion to follow we will use a fractional-step method based on the velocity-pressure form of the fluid
equations to define partitioned FSI algorithms. In Section 3 a traditional partitioned scheme, referred to as
the TP-RB algorithm, is described. Then in Section 4 we present our new added mass partitioned scheme
which will be referred to as the AMP-RB algorithm. The important di↵erence in the two approaches lies in
the coupling of the fractional-step method for the fluid with the equations governing the motion of the body.

3. Traditional Partitioned/Rigid-Body algorithm TP-RB

We begin our discussion of partitioned algorithms for the model FSI problem by considering a traditional
partitioned scheme. This is done to establish the basic elements of a partitioned FSI algorithm based on a
fractional-step time-stepping scheme for the velocity-pressure formulation of the fluid equations and to lay
the groundwork for a later discussion of the new added-mass partitioned scheme.

To set some notation, let xi denote the grid-point coordinates of a mesh covering the fluid domain, x 2 ⌦,
where i = (i1, i2) is a multi-index, and let i 2 ⌦h denote the set of indices of points in the interior of the fluid
grid while i 2 �h are the indices of points on the interface, x 2 �b. Grid functions for the fluid velocity and
pressure are given by vn

i ⇡ v(xi, t
n) and pni ⇡ p(xi, t

n), respectively, where tn = n�t, n = 0, 1, 2, . . ., denote
discrete times with time step �t. The rigid-body displacement, velocity, and acceleration at discrete times
are given by xn

b ⇡ xb(tn), vn
b ⇡ vb(tn), and anb ⇡ ab(tn) respectively. Second-order accurate approximations

are used for the spatial operators in (1), (2) and (9), and we denote these discrete approximations using a
subscript h (precise definitions for these approximations are not important in the present discussion). In
describing the algorithm, vn

i , p
n
i , v

n
b and anb are assumed to be known at tn and tn�1, and the output is the

discrete solution at tn+1.
The TP-RB time-stepping scheme is described in Algorithm 1, and uses four procedures which are

defined below. The resulting scheme is formally second-order accurate in both space and time, using either
the predicted values as the solution at tn+1, or the discrete solution after the correction steps. Generally, the
predictor-corrector scheme has favorable stability properties in comparison to the scheme using the prediction
steps alone, but in either case the algorithm su↵ers from instabilities when added-mass or added-damping
e↵ects are significant. This occurs when the ratio of the mass of the rigid body to that of the fluid contained
in ⌦ is too small as shown in Sections 5.1 and 5.2. The added-mass/added-damping instabilities can be
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half plane problem. The transformed half-plane problem is then linearized, the coe�cients are frozen, and
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For this FSI problem, added-mass e↵ects arise from a vertical acceleration of the body while added-damping
e↵ects occur from a horizontal acceleration. The problem can be simplified further by considering a finite
domain and assuming, for example, periodic boundary conditions for the fluid in the horizontal direction
and a boundary condition for velocity or pressure of the fluid at a height H in the vertical direction.

Following the prescription outlined above, we consider a model FSI problem in which the fluid occupies
the rectangular domain, ⌦ = [0, L]⇥[0, H] with coordinates x = [x, y]T , and lies above a rigid-body occupying
the region ⌦b = [0, L] ⇥ [�H̄, 0], see Figure 3. The fluid in ⌦ has velocity, v(x, t) = [u(x, t), v(x, t)]T , and
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respectively, and the motion of the body is connected to that of the fluid by conditions on velocity and stress
along �b. The full set of equations governing the model problem are
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Side fluid BCs: v(0, y, t) = v(L, y, t), y 2 [0, H]. (8)

Here, ⇢ is the constant fluid density, µ is the constant fluid viscosity, mb is the mass of the rigid body, and
gu(t) and gv(t) are external forces on the rigid body in the horizontal and vertical directions, respectively.
These equations are augmented with appropriate initial conditions.
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An added-mass model problem is derived by considering vertical motions
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Figure 3: The geometry for the rectangular geometry FSI model problems.

An elliptic equation for the fluid pressure can be derived by taking the divergence of the momentum
equation in (1) and using the continuity equation in (2) to give

�p= 0, x 2 ⌦. (9)

In the velocity-pressure form of the Stokes equations, the momentum equation for the velocity in (1) is used
with the Laplace equation for the pressure in (9) instead of the divergence equation in (2).

To retain consistency with the original velocity-divergence form of the equations, zero divergence is
specified as an additional boundary condition, i.e. r · v = 0 for x 2 @⌦, see [23] for additional details. In
the discussion to follow we will use a fractional-step method based on the velocity-pressure form of the fluid
equations to define partitioned FSI algorithms. In Section 3 a traditional partitioned scheme, referred to as
the TP-RB algorithm, is described. Then in Section 4 we present our new added mass partitioned scheme
which will be referred to as the AMP-RB algorithm. The important di↵erence in the two approaches lies in
the coupling of the fractional-step method for the fluid with the equations governing the motion of the body.

3. Traditional Partitioned/Rigid-Body algorithm TP-RB

We begin our discussion of partitioned algorithms for the model FSI problem by considering a traditional
partitioned scheme. This is done to establish the basic elements of a partitioned FSI algorithm based on a
fractional-step time-stepping scheme for the velocity-pressure formulation of the fluid equations and to lay
the groundwork for a later discussion of the new added-mass partitioned scheme.

To set some notation, let xi denote the grid-point coordinates of a mesh covering the fluid domain, x 2 ⌦,
where i = (i1, i2) is a multi-index, and let i 2 ⌦h denote the set of indices of points in the interior of the fluid
grid while i 2 �h are the indices of points on the interface, x 2 �b. Grid functions for the fluid velocity and
pressure are given by vn

i ⇡ v(xi, t
n) and pni ⇡ p(xi, t

n), respectively, where tn = n�t, n = 0, 1, 2, . . ., denote
discrete times with time step �t. The rigid-body displacement, velocity, and acceleration at discrete times
are given by xn

b ⇡ xb(tn), vn
b ⇡ vb(tn), and anb ⇡ ab(tn) respectively. Second-order accurate approximations

are used for the spatial operators in (1), (2) and (9), and we denote these discrete approximations using a
subscript h (precise definitions for these approximations are not important in the present discussion). In
describing the algorithm, vn

i , p
n
i , v

n
b and anb are assumed to be known at tn and tn�1, and the output is the

discrete solution at tn+1.
The TP-RB time-stepping scheme is described in Algorithm 1, and uses four procedures which are

defined below. The resulting scheme is formally second-order accurate in both space and time, using either
the predicted values as the solution at tn+1, or the discrete solution after the correction steps. Generally, the
predictor-corrector scheme has favorable stability properties in comparison to the scheme using the prediction
steps alone, but in either case the algorithm su↵ers from instabilities when added-mass or added-damping
e↵ects are significant. This occurs when the ratio of the mass of the rigid body to that of the fluid contained
in ⌦ is too small as shown in Sections 5.1 and 5.2. The added-mass/added-damping instabilities can be
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• The AMP scheme matches the vertical accelerations at the interface  

• And applies a generalized Robin condition to the fluid pressure equation 
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The resulting AMP scheme is stable for any finite mass, while the traditional 
scheme suffers
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Figure 3: The geometry for the rectangular geometry FSI model problems.

An elliptic equation for the fluid pressure can be derived by taking the divergence of the momentum
equation in (1) and using the continuity equation in (2) to give

�p= 0, x 2 ⌦. (9)

In the velocity-pressure form of the Stokes equations, the momentum equation for the velocity in (1) is used
with the Laplace equation for the pressure in (9) instead of the divergence equation in (2).

To retain consistency with the original velocity-divergence form of the equations, zero divergence is
specified as an additional boundary condition, i.e. r · v = 0 for x 2 @⌦, see [23] for additional details. In
the discussion to follow we will use a fractional-step method based on the velocity-pressure form of the fluid
equations to define partitioned FSI algorithms. In Section 3 a traditional partitioned scheme, referred to as
the TP-RB algorithm, is described. Then in Section 4 we present our new added mass partitioned scheme
which will be referred to as the AMP-RB algorithm. The important di↵erence in the two approaches lies in
the coupling of the fractional-step method for the fluid with the equations governing the motion of the body.

3. Traditional Partitioned/Rigid-Body algorithm TP-RB

We begin our discussion of partitioned algorithms for the model FSI problem by considering a traditional
partitioned scheme. This is done to establish the basic elements of a partitioned FSI algorithm based on a
fractional-step time-stepping scheme for the velocity-pressure formulation of the fluid equations and to lay
the groundwork for a later discussion of the new added-mass partitioned scheme.

To set some notation, let xi denote the grid-point coordinates of a mesh covering the fluid domain, x 2 ⌦,
where i = (i1, i2) is a multi-index, and let i 2 ⌦h denote the set of indices of points in the interior of the fluid
grid while i 2 �h are the indices of points on the interface, x 2 �b. Grid functions for the fluid velocity and
pressure are given by vn

i ⇡ v(xi, t
n) and pni ⇡ p(xi, t

n), respectively, where tn = n�t, n = 0, 1, 2, . . ., denote
discrete times with time step �t. The rigid-body displacement, velocity, and acceleration at discrete times
are given by xn

b ⇡ xb(tn), vn
b ⇡ vb(tn), and anb ⇡ ab(tn) respectively. Second-order accurate approximations

are used for the spatial operators in (1), (2) and (9), and we denote these discrete approximations using a
subscript h (precise definitions for these approximations are not important in the present discussion). In
describing the algorithm, vn

i , p
n
i , v

n
b and anb are assumed to be known at tn and tn�1, and the output is the

discrete solution at tn+1.
The TP-RB time-stepping scheme is described in Algorithm 1, and uses four procedures which are

defined below. The resulting scheme is formally second-order accurate in both space and time, using either
the predicted values as the solution at tn+1, or the discrete solution after the correction steps. Generally, the
predictor-corrector scheme has favorable stability properties in comparison to the scheme using the prediction
steps alone, but in either case the algorithm su↵ers from instabilities when added-mass or added-damping
e↵ects are significant. This occurs when the ratio of the mass of the rigid body to that of the fluid contained
in ⌦ is too small as shown in Sections 5.1 and 5.2. The added-mass/added-damping instabilities can be
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• The added mass for this problem is easily identified as  

• Thm: The 2nd order accurate AMP scheme for the added-mass model problem is stable 
provided                   is bounded away from zero. 

• Thm: The 2nd order traditional partitioned scheme is stable if and only if  
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An added-damping model problem is derived by considering horizontal motions

rigid body: ⌦b

fluid: ⌦

interface: �b
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y = H

Figure 3: The geometry for the rectangular geometry FSI model problems.

An elliptic equation for the fluid pressure can be derived by taking the divergence of the momentum
equation in (1) and using the continuity equation in (2) to give

�p= 0, x 2 ⌦. (9)

In the velocity-pressure form of the Stokes equations, the momentum equation for the velocity in (1) is used
with the Laplace equation for the pressure in (9) instead of the divergence equation in (2).

To retain consistency with the original velocity-divergence form of the equations, zero divergence is
specified as an additional boundary condition, i.e. r · v = 0 for x 2 @⌦, see [23] for additional details. In
the discussion to follow we will use a fractional-step method based on the velocity-pressure form of the fluid
equations to define partitioned FSI algorithms. In Section 3 a traditional partitioned scheme, referred to as
the TP-RB algorithm, is described. Then in Section 4 we present our new added mass partitioned scheme
which will be referred to as the AMP-RB algorithm. The important di↵erence in the two approaches lies in
the coupling of the fractional-step method for the fluid with the equations governing the motion of the body.

3. Traditional Partitioned/Rigid-Body algorithm TP-RB

We begin our discussion of partitioned algorithms for the model FSI problem by considering a traditional
partitioned scheme. This is done to establish the basic elements of a partitioned FSI algorithm based on a
fractional-step time-stepping scheme for the velocity-pressure formulation of the fluid equations and to lay
the groundwork for a later discussion of the new added-mass partitioned scheme.

To set some notation, let xi denote the grid-point coordinates of a mesh covering the fluid domain, x 2 ⌦,
where i = (i1, i2) is a multi-index, and let i 2 ⌦h denote the set of indices of points in the interior of the fluid
grid while i 2 �h are the indices of points on the interface, x 2 �b. Grid functions for the fluid velocity and
pressure are given by vn

i ⇡ v(xi, t
n) and pni ⇡ p(xi, t

n), respectively, where tn = n�t, n = 0, 1, 2, . . ., denote
discrete times with time step �t. The rigid-body displacement, velocity, and acceleration at discrete times
are given by xn

b ⇡ xb(tn), vn
b ⇡ vb(tn), and anb ⇡ ab(tn) respectively. Second-order accurate approximations

are used for the spatial operators in (1), (2) and (9), and we denote these discrete approximations using a
subscript h (precise definitions for these approximations are not important in the present discussion). In
describing the algorithm, vn

i , p
n
i , v

n
b and anb are assumed to be known at tn and tn�1, and the output is the

discrete solution at tn+1.
The TP-RB time-stepping scheme is described in Algorithm 1, and uses four procedures which are

defined below. The resulting scheme is formally second-order accurate in both space and time, using either
the predicted values as the solution at tn+1, or the discrete solution after the correction steps. Generally, the
predictor-corrector scheme has favorable stability properties in comparison to the scheme using the prediction
steps alone, but in either case the algorithm su↵ers from instabilities when added-mass or added-damping
e↵ects are significant. This occurs when the ratio of the mass of the rigid body to that of the fluid contained
in ⌦ is too small as shown in Sections 5.1 and 5.2. The added-mass/added-damping instabilities can be

7

• The AMP scheme uses the exact solution to form the discrete approximation 

here    is a ratio of viscous length scales, and     is an added-damping coefficient (in 3D these 
become added-damping tensors) 
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The AMP scheme with extra velocity projection is stable even for 
massless bodies
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Figure 3: The geometry for the rectangular geometry FSI model problems.

An elliptic equation for the fluid pressure can be derived by taking the divergence of the momentum
equation in (1) and using the continuity equation in (2) to give

�p= 0, x 2 ⌦. (9)

In the velocity-pressure form of the Stokes equations, the momentum equation for the velocity in (1) is used
with the Laplace equation for the pressure in (9) instead of the divergence equation in (2).

To retain consistency with the original velocity-divergence form of the equations, zero divergence is
specified as an additional boundary condition, i.e. r · v = 0 for x 2 @⌦, see [23] for additional details. In
the discussion to follow we will use a fractional-step method based on the velocity-pressure form of the fluid
equations to define partitioned FSI algorithms. In Section 3 a traditional partitioned scheme, referred to as
the TP-RB algorithm, is described. Then in Section 4 we present our new added mass partitioned scheme
which will be referred to as the AMP-RB algorithm. The important di↵erence in the two approaches lies in
the coupling of the fractional-step method for the fluid with the equations governing the motion of the body.

3. Traditional Partitioned/Rigid-Body algorithm TP-RB

We begin our discussion of partitioned algorithms for the model FSI problem by considering a traditional
partitioned scheme. This is done to establish the basic elements of a partitioned FSI algorithm based on a
fractional-step time-stepping scheme for the velocity-pressure formulation of the fluid equations and to lay
the groundwork for a later discussion of the new added-mass partitioned scheme.

To set some notation, let xi denote the grid-point coordinates of a mesh covering the fluid domain, x 2 ⌦,
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The TP-RB time-stepping scheme is described in Algorithm 1, and uses four procedures which are

defined below. The resulting scheme is formally second-order accurate in both space and time, using either
the predicted values as the solution at tn+1, or the discrete solution after the correction steps. Generally, the
predictor-corrector scheme has favorable stability properties in comparison to the scheme using the prediction
steps alone, but in either case the algorithm su↵ers from instabilities when added-mass or added-damping
e↵ects are significant. This occurs when the ratio of the mass of the rigid body to that of the fluid contained
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Figure 5: Stability regions and unstable modes for the AMP-RB-scheme with velocity correction. Bottom left:
stability region in the �d–m̄b plane for � = .5 with zoom of lower left; shaded unstable regions are marked according
to the form of the instability. Bottom: right: stability region in the �d–� plane for the zero-mass body. Top: unstable
modes in space and time for the three instability types (� = .5 and m̄b = 0).

Theorem 5. The traditional-partitioned scheme for solving the added-damping model problem MP-AD, using
Algorithm 5 with �d = 0 and no velocity-correction-step, is stable when m̄b > 0 for su�ciently small �t with
�t ! 0 as mb ! 0. The stability region depends on m̄b and � and the numerically computed stability region
is shown in Fig. 6. Based on the approximate stability boundary (77), a necessary and nearly su�cient
condition for stability is that the time-step must satisfy

�t <⇡
1

⌫

2

Ktp C⌘

mb

⇢L
�y ) �t <⇡

8
>>><

>>>:
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⌫
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(78)

Equation (78) follows directly from (77), the definition of m̄b, and the asymptotic form for C⌘,

C⌘ ⇠
(
� for � ⌧ 1,
3
2 for � � 1.

Thus although the TP scheme can be stabilized at finite mass with a su�ciently small value of �t, the
maximal stable time step approaches zero as the square of the rigid body mass tends to zero, making the
TP scheme rapidly impractical for light bodies.

The results of the stability analysis are confirmed by numerically solving the model problem and checking
whether the computed solutions appear to be stable or unstable. Figure 7 shows values of the parameters m̄b

and �d (with � = 0.5) where the AMP-RB schemes are numerically determined to be stable or unstable. In
particular, the black dots stand for points where the numerical solution appeared to be stable up to a final
time of t = 50, while the magenta dots stand for points where the solution became unstable. The solutions
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The AMP-RB scheme is implemented in Overture and is found to be stable 
against both added-mass and added damping instabilities without iteration
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Figure 9: Rising body, streamlines and contours of the pressure for ⇢b = .001 at times t = 2, t = 4 and t = 10
computed using grid Grid G(16).
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Figure 10: Light rising body. Left: vertical body position yb. Right: vertical velocity of the body, vb. Comparing
results from grid G(4), G(8), G(16) and G(32).
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the surface integrals defining the added-damping tensors (57)-(60), using the discrete geometry defining the
rounded rectangle. For grid G(4), these computed added-damping coe�cients for the rounded rectangle were
found to be

Dvv

11 ⇡ 1.917
µ

�n
, Dvv

22 ⇡ .917
µ

�n
, D!!

22 ⇡ .379
µ

�n
,

with other entries in the tensors being approximately zero. These above entries are nearly equal to the actual
coe�cients for a square-cornered solid rectangle (??) of

Dvv

11 = 2w
µ

�n
= 2

µ

�n
, Dvv

22 = 2h
µ
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=

µ
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µ

�n
= .375

µ
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For this problem, added-damping e↵ects can play a critical role, especially on coarser grids when the time-
step is larger. Recall that added-damping is proportional to µ�t/�n, where �n =

p

⌫�t/2 and thus

added-damping e↵ects increase for larger values of
p
⌫�t. Figure 13 shows that the simulation on grid G(4)

fb
is unstable due to added-damping e↵ects when the added-damping coe�cient �

d

is chosen too small (�
d

= .5
in this case). The instability appears primarily in the rotation of the body, the time history of the angular
acceleration, !̇3, shows a large high-frequency oscillation. This instability seems to become saturated due to
counter-acting pressure forces (i.e. added-mass e↵ects).

Figure 12 compares results from the AMP-RB scheme versus the TP-SI on grid G(4). The TP-SI scheme
required on average 85 sub-iteration per step with a relaxation parameter of ! = .00025. The results are
nearly indistinguishable, indicating that the AMP scheme can achieve essentially the same solution as the
traditional scheme but without sub-iterations.

Figure 8: Rising body: Coarse composite grid G(4), at times t = 2, t = 4 and t = 10. A grid is located on the top
face, with grid lines clustered at the top, to allow the body to more closely approach this face.
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By comparison, the traditional partitioned scheme requires ~85 under-relaxed 
iterations to provide comparable results
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Figure 9: Rising body, streamlines and contours of the pressure for ⇢b = .001 at times t = 2, t = 4 and t = 10
computed using grid Grid G(16).
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Figure 10: Light rising body. Left: vertical body position yb. Right: vertical velocity of the body, vb. Comparing
results from grid G(4), G(8), G(16) and G(32).
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Figure 11: Light rising body. Left: vertical acceleration of the light rising body. Right: zoom near t = 4.75 showing
the perturbations to the accelerations caused by the changes in overlapping grid interpolation points as the grid
moves.
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Figure 12: A comparison of the AMP-RB scheme versus the TP-SI for a light body. Results for grid G(4). For
this di�cult problem, the TP-SI scheme required, on average, 85 sub-iterations per step. The results are nearly
indistinguishable.
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A more challenging case is that of a light cylinder rising in counterflow

8.4. Rising disk in a counter-flow

We consider a buoyant and light rigid-disk rotating and rising in a vertical channel. This problem will
be used to evaluate the added-mass and added-damping algorithms for a disk under-going large rotations
and translations. A downward flow is added to keep the disk relatively near the central portion of the
computational domain over a long period of time.

x

y

1
2

1
2

� 5
4

5
4

Figure 14: Rising disk in a counter-flow. Left: geometrical configuration at t = 0. The other figures show the
composite grid G(2)

rd (coarse grid), plus zooms.

The geometry of the problem (see Figure 14) consists a vertical channel with horizontal dimensions
[�w,w] = [�5/4, 5/4], and vertical dimensions of [y

a

, y
b

] = [�8, 6] and a a disk of radius R
d

= 1
2 initially

centered at ( 12 ,
1
2 ) (nearer the right side of the channel). To avoid a non-smooth impulsive start (which would

likely result in at best first-order accurate results), the initial conditions are taken as zero for all variables
and gravity and the inflow conditions are smoothly ramped over time using the ramp function (63). No-slip
boundary conditions are taken on the left and right faces of the channel and the boundary of the disk. At
the top of the channel, a parabolic-like inflow profile is given defined by

v(x, y) = V0 R(t)

8

>

>

<

>

>

:

(x+w)2

(� 1
2+w)2

, for x 2 [�w,� 1
2 ],

1, for |x|  1
2 ,

(w�x)2

(w� 1
2 )

2 , for x 2 [ 12 , w],

,

where R(t) is the ramp function (63) and the magnitue of the downward velocity is taken as V0 = �1.15.
An outflow boundary condition is taken at the bottom boundary of the channel, with the pressure set to
zero, p = 0 and the tangential components of the velocity extrapolated. For the simulations shown, gravity
is downward with a magnitude of g = 10. The viscosity is taken as ⌫ = 1, the fluid densiy is ⇢ = 1 and the
body density is ⇢

b

= 10�3.
The initial-time composite grid for the problem is shown in Figure 14. The grid of resolution factor j

is denoted by G(j)
rd . The grid consists of six component grids. Portions of the inlet and outlet regions are

covered with coarser grids that span the channel. These grids have grid points clustered near the vertical
side walls and are also stretched in the vertical direction to coarsen the grid away from the central portion
of the computational domain. Finer grids are used near the disk and consists of two boundary layer grids,
a Cartesian background grid, and a stretched annular grid around the cylinder.
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⇢b = .001

• The AMP-RB scheme is again stable without any iteration 

• Traditional partitioned scheme needs ~2000 sub iterations to stabilize 
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A more challenging case is that of a light cylinder rising in counterflow



Extensions to multiple bodies presents no particular challenges, and the scheme 
is robust even in the presence of both light and heavy bodies



Extensions to multiple bodies presents no particular challenges, and the scheme 
is robust even in the presence of both light and heavy bodies

8.5. Interaction between a rising body and falling body

Figure 18: Composite grids at di↵erent times for the interaction between a rising and falling body. Left to right:
Grid G(4)

rf at times t = 1, 8, 10 and 12.

We consider the bouyancy-driven interaction of two rectangular-shaped bodies, initially located one
above the other as shown in Figure 18. The lower and lighter body (referred henceforth as the bottom
body) of density ⇢

b

= 0.5 attempts to rise in a fluid of density ⇢ = 1 but is initially impeded by a heavier
body (referred henceforth as the top body) of density ⇢

b

= 1.5 that is attempting to fall. This example
demonstrates the properties of the AMP-RB scheme in the case of multiple relatively-light bodies when
added-mass and added-damping e↵ects due to nearby moving bodies vary over time.

The fluid domain is the rectangle ⌦ = [�1.5, 1.5]⇥[�2, 2]. The solids are rectangles with rounded corners,
both of the same shape and with approximate width 1 and height 0.4. The top solid with density ⇢

b

= 1.5
is initially centered at (x, y) = (0, .35) and is rotated counter-clockwise by 15o about its centre. The bottom
solid with density ⇢

b

= 0.5 is initially centered at (x, y) = (0,�.35) and is rotated counter-clockwise by 15o

about its centre. The composite grid for the domain, denoted by G(j)
rf , where j denotes the resolution factor,

consists of three component grids as shown in Figure 18. A rectangular background grid covers most of
the domain. A local boundary-fitted grid around each rigid-body is constructed with the SmoothedPolygon
mapping [12]. The target grid spacing, away from boundary layer grids, is �s(j) = 1/(10j). The grids lines
are clustered near the body surfaces by a factor of approximately 4.

The boundary conditions for the problem are taken as no-slip walls on the bodies and all sides of the
rectangle (i.e. a closed box). Initially the fluid and bodies are at rest (zero initial values). The fluid density
and viscosity are set to ⇢ = 1 and µ = .05, respectively. The gravity vector is downward with magnitude
g = 1, and to avoid a non-smooth impulsive start, the gravity is ramped on over time using the ramp
function (63).

Contours of the pressure are shown at selected times in Figure 19, while the time-history of the rigid
body variables are shown in Figure 20. Figure 20 also shows an animation of the two bodies over time. The
bodies start from rest and gravity is ramped on smoothly over the time interval [0, 1]. Early on the bodies
slowly approach one another. A large pressure force develops in the gap between the bodies; reducing the
rate at which the gap closes. The top-body begins to move to the left and the bottom-body to the right.
At the same time the bodies begin to rotate in a counter-clockwise direction. The bodies continue to slide
by each other and rotate. By time t = 10 the bodies have nearly separated from one another and the gap
between the bodies becomes quite small. The angular acceleration of the bodies is largest in magnitude
about this time. By time t = 12 the bodies have separated and there is a negative pressure in the remaining
gap that keeps bodies from separating too quickly. The bodies now quickly separate and by time t = 15
they are starting to approach the lower and upper walls of the fluid container.

Figure 21 shows a grid convergence study for selected rigid body variables; other variables show similar
behaviour. As the grid is refined the curves are seen to converge in a manner consistent with second-order
accuracy with the separation between curves decreasing rapidly as the grids are refined. The positions and

velocities of the bodies are reasonably represented even on the coarsest grid G(2)
rf , although the accelerations

on this coarsest grid are quite oscillatory. Some oscillations remain on results from finer grids although their
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• Careful analysis of simplified model problems motivates our stable and 2nd order accurate 
AMP-RB scheme for incompressible flows 

• Stability analysis in simple geometries shows excellent stability properties even in the un-
iterated form 

• Implementation within Overture illustrates the utility of the approach for both light and 
heavy bodies 

Summary

• implement in 3D 

• investigate the alternate added-mass potential formulation 

• New FSI regimes (incompressible/incompressible, compressible/beams)

Future Work


