

High-Order Overset CFD Simulations Using FDL3DI

Scott E. Sherer Aerodynamic Technology Branch Aerospace Systems Directorate

> 13th Overset Grid Symposium Mukilteo, WA 17-20 October, 2016

DISTRIBUTION A. Approved for public release: distribution unlimited (88ABW-2016-5849)

- AFRL researchers who performed much of the work highlighted here: Dr. Miguel Visbal (team leader), Dr. Dan Garmann, Dr. Donald Rizzetta, Dr. Phil Morgan, Dr. Nick Bisek (AFRL/RQH)
- Computational resources used in these simulations provided by grants of HPC time from DoD HPCMO
- Most of the research performed using FDL3DI is conducted under the sponsorship of AFOSR

- Organizational Overview
- Overview of FDL3DI
- Recent upgrades of FDL3DI
 - "FDLv2"
 - BUNGe Domain Decomposer
- Three Recent Applications of FDL3DI
 - Wing-Vortex Aerodynamics
 - Flow control for laminar flow airfoils
 - Shock/boundary layer interaction in front of canonical shapes

MULTI-DISCIPLINARY AERODYNAMICS TEAM Research Scope

MULTI-DISCIPLINARY AERODYNAMICS TEAM Research Scope

FDL3DI OVERVIEW

NUMERICAL APPROACH Implicit LES Technique

Challenges

- Accurate transition prediction
- Interspersed regions of laminar/transitional/ turbulent flows
- Extendable to dynamic problems and realistic geometries

High-fidelity Implicit LES approach

- Accuracy provided by 6th-order compact finite differencing
- A high-order filter acts as an implicit subgrid-stress (SGS) model
- Provides a seamless approach for mixed laminar/transitional/turbulent flows
- Has been extensively-validated for benchmark and applied problems

FDL3DI: ILES flow solver

RECENT IMPROVEMENTS TO FDL3DI "FDLv2"

Converted entire code to Fortran90

- A modular design, use of allocatable arrays, etc.
- Placed under version control using git
- Strong portability...no external libraries
- General code clean-up for consistency, readability and cache/vectorization improvements

MPI-I/O

- Orders of magnitude increase in I/O speed
- Dramatically reduces processor idle time in I/O
- Enables significantly larger problems

OpenMP multi-threading

- Proven linear scalability decreases runtime while retaining solution quality
- Facilitates simulation of more relevant flow conditions with practical runtime

Robust hole-cutting and scheme adaption

- Enables more complex and aircraft-relevant configurations
- A shock detection and capturing capability with dynamic scheme adjustment (Compact/ Roe hybrid, adaptive filtering, or selective artificial dissipation)

Algorithmic enhancements via filter compact delta formulation

- Drastic simplification of the code...removed thousands of redundant lines of code
- Permits adaptive filtering and on-the-fly scheme adjustments for future capabilities

Previous Approach = BELLERO + FDL3DI

- Run PEGASUS to get second-order, grid-level connectivity
- Run BELLERO to process Plot3D grid and XINTOUT file
 - ♦ Determine "optimum" grid decomposition
 - Establish point-to-point connectivity for block-level (decomposed) topology and handle periodic boundary conditions
 - Decompose grid-level connectivity obtained from PEGASUS to block level
 - Compute high-order offsets / interpolation coefficients using expanded stencils
 - Track hole boundaries for insertion of appropriate one-sided derivative and filter formulations in neighborhood of holes
 - ♦ Write out high-order XINTOUT file (plus additional data in auxiliary files)
- Run FDL3DI using input files generated by BELLERO

Useful but limitations became apparent over time

- A lack of robustness in grid decomposition algorithm
- Code executed serially with considerable redundancy (count/store loops)
- Source code overly complicated, not robust and difficult to maintain
- Large amount of serial file I/O, with BELLERO computing and writing out data (serially) to be subsequently read in (serially) by FDL3DI

Current Approach = BUNGe + FDLv2

(BUNGE: <u>BELLERO</u> <u>Upgrade</u> for the <u>Next</u> <u>Generation</u>)

- Run PEGASUS to get second-order, grid-level connectivity
- Run BUNGe to establish partition with improved methodology, using Plot3D grid file or just the grid header data if no holes are present
- All other BELLERO functionality has been absorbed by FDLv2
 - Communications updates are segregated by type (P2P, periodic, overset)
 - ♦ Expansion of stencils to high-order simplified and more robust
 - Use of persistent MPI communication removes unnecessary handshakes for repeated non-blocking communication
 - ♦ Use of MPI sub-array datatypes removes unnecessary buffer copies
 - ♦ Extends efficient MPI scalability beyond 10,000 processors

Significant improvements in robustness and efficiency

- Marked increase in robustness and speed of partitioning with BUNGe
- BELLERO serial operations parallelized and streamlined within FDLv2 (each processor handles its own connectivity data)
- Source code simplified, improving readability and maintainability
- Minimized file I/O requirements, FDLv2 uses MPI-IO to read in original PEGASUS XINTOUT file (in addition to grid/restart files)

BUNGe – "Brute Force Done Smartly"

- Explore every possible partition given number of grids in original system and number of decompositions desired
- Code starts with a "preferred partition" and spirals outward using an efficient recursive algorithm trying to account for all possible partitions
- User can limit the range of blocks away from preferred partition to check, set upper time limit spent looking for a partition, or "success" criteria
- Code quickly eliminates unrealizable decompositions for a given grid, greatly reducing the number of partitions that have to be checked
- Many optimized metrics have been coded, haven't settled on "best"

Strengths and Limitations

- Appears to be very efficient, fast and robust (although still serial)
- Allows user to explore range of decompositions before running solver
- Not currently "hole aware"...putting in this capability now
- Outstanding for grid systems with small numbers of grids, upper practical limit for number of grids in the original system (17 grids largest system decomposed thus far)

$$NP_{check} = \prod_{i=1}^{NG} (NB_{\max}^{i} - NB_{\min}^{i} + 1)$$

RECENT IMPROVEMENTS TO FDL3DI BUNGE GRID PARTITIONER

ORIGINAL BELLERO

OPTIMIZED FOR "EFFICIENCY" (MAXIMUM LOAD COEFFICIENT)

ΔNB = 1

OPTIMIZED FOR "EFFICIENCY" (MAXIMUM LOAD COEFFICIENT)

ΔNB = 5

OPTIMIZED FOR "EFFICIENCY" (MAXIMUM LOAD COEFFICIENT)

ΔNB = 10

OPTIMIZED FOR "EFFICIENCY" (MAXIMUM LOAD COEFFICIENT)

ΔNB = 25

OPTIMIZED FOR "EFFICIENCY" (MAXIMUM LOAD COEFFICIENT)

ΔNB = 50

OPTIMIZED FOR "EFFICIENCY" (MAXIMUM LOAD COEFFICIENT)

Wing-Vortex Aerodynamics

- Unsteady evolution of tip vortex on stationary and oscillating wing
- Interaction of wing and streamwise oriented vortex

Flow Control for Laminar Flow Airfoils

- Plasma-based control of transition due to leading-edge excrescence
- Continuous, pulsed and segmented blowing for high-lift configuration

Shock/Boundary Layer Interaction in Front of Canonical Shapes

- Wall-mounted circular half-step
- Wall-mounted two-dimensional cylinder
- Wall-mounted hemisphere

GARMANN AND VISBAL

- Bronce Research uponing
- Characterize the unsteady nature of a tip vortex generated on a wing subjected to high-frequency, low-amplitude oscillations (AIAA 2016-0328)
- Elucidate implications of wing/vortex motion in unsteady wake encounters or when in formation flight (AIAA 2015-1066, AIAA 2015-3073)

Tip Vortex Study

Total cell	Maximum Surface Spacing			
count	$(\Delta n/c)_{\rm max}$	$(\Delta s/c)_{\rm max}$	$(\Delta z/c)_{\rm max}$	
~ 404M	0.005%	0.25%	0.20%	

Wing-Vortex Interaction Study

Total cell	Maximum Surface Spacing (×10 ³)				
count	Normal	Streamwise	Spanwise		
~336M	0.052	5.093	5.000		

WINGTIP VORTEX EVOLUTION

GARMANN AND VISBAL

Induced orbital motion of tip vortex

Effect of heaving frequency/amplitude

Transitory jet-to-wake/wake-to-jet events Emergence of Secondary Corner vortex

vanies the incention of winding

Core expansion

- Examine flow control concepts for Multi-Objective Leading-Edge Concept airfoil (MOLEC), a NASA design with a seamless, morphing leading-edge flap and a simple hinged trailing-edge flap (AIAA 2016-0322)
- Examine plasma control for delaying excrescence-generated transition due to spanwise-uniform or distributed roughness elements (AIAA 2015-3035)

MOLEC AIRFOIL

RIZZETTA ET AL.

Full span vs. segmented blowing

	configuration	α	Cl	m	
	continuous blowing	5	4.83	0.087	220% < mass flow
3% < lift	pulsed blowing	5	4.67	0.059	32% < Mass now
15% < lift	continuous blowing	15	4.98	0.087	
15% < 111	pulsed blowing	15	4.23	0.059	

PLASMA CONTROL WITH EXCRESCENCE

RIZZETTA ET AL.

surface pressure

Temporal spectra at streamwise locations

- Understand physics of unsteady SWBLI in front of wall-mounted shapes (step:AIAA 2015-2640,half-cylinder:AIAA 2016-0046,hemi:AIAA 2016-3650)
- Determine if DDES and hybrid RANS/LES models properly model SWBLI
- Investigate effects of grid topology and eventually compare to AMR results

- Build up approach: step, cylinder, hemi
- Single-grid topology with various refinements (77.6M for half-step, 328M for fine cylinder, 300M for coarse hemi)
- Boundary layer tripped using plasma trip with Shyy body force model and allowed to transition naturally downstream
- Flow conditions -> M_∞=2.0, Re_R = 200K (step) / 300K (cyl/hemi)

SWBLI OF CANONICAL SHAPES

MORGAN ET AL.

PSD in sep bubble

Incoming TBL profile comparisons

Separation point comparison

Case	Upstream	Upstream
	separation	reattachment
RANS-SA-F	-2.36	25.3^{o}
RANS-SA-M	-2.38	26.7^{o}
RANS-SA-C	-2.35	23.3^{o}
DDES-F	-2.74	21.6^{o}
DDES-M	-2.58	21.6^{o}
DDES-C	-2.40	23.3^{o}
LES	-2.22	25.4^{o}

- FDL3DI is a powerful, high-order, structured overset CFD solver developed in AFRL/RQV
 - ♦ Scalable and efficient
 - ♦ Implicit LES capability
 - Compact scheme with filtering, hybrid shock capturing, high-order interpolation, hole handling
- Used to discover fundamental physics associated with complex, multi-disciplinary fluid dynamic problems
- Used in combination with OVERFLOW (much shared infrastructure) by my branch, and other unstructured solvers (FUN3D, AVUS) within the Comp Sci Center
- Recent upgrades (BUNGe and FDLv2) have significantly improved usability and functionality