
A Subzone-Based In-Situ Technique for I/O Efficient Analysis and Visualization of Overset Grid Results

Scott Imlay, CTO Craig Mackey, Senior Research Engineer Scott Fowler, Product Manager

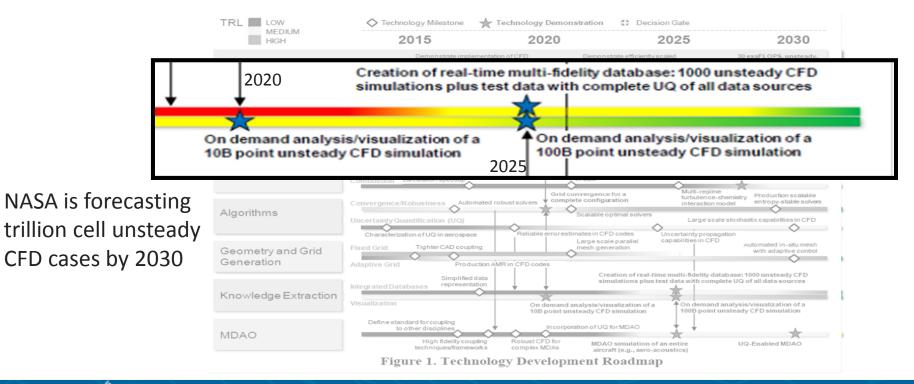
Agenda:

- 1. Introduction & Motivation
- 2. SZL Technology Explained (Enabling Technology)
- 3. New InSitu Technique Described

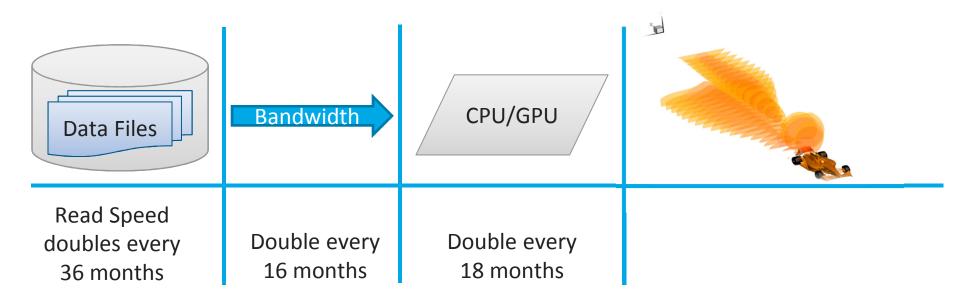
2

- 4. Comparison with Traditional InSitu
- 5. Results

SZL Technology: Motivation


- Wide range in length scales
- Resolution of grid (# of grid points) constrained by computer performance (growing with Moore's law)

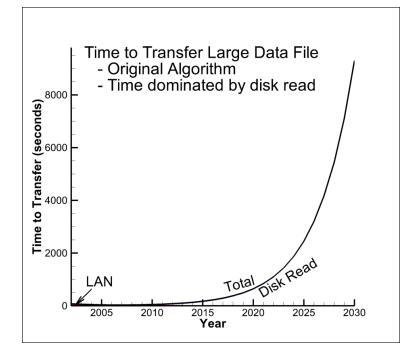
3



SZL Technology: CFD 2030

SZL Technology: Pipeline

Data IO is the rate-determining step in the visualization pipeline.


SZL Technology: Impact of Disk I/O Bottleneck

6

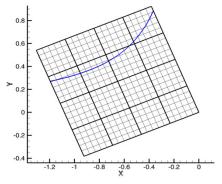
- Disk read performance growing slower than grid size
- Current visualization architectures will perform dramatically worse as time goes on!

Master the View

tecplot

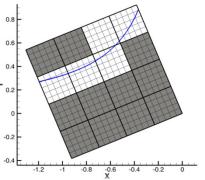
SZL Technology: Basic Idea

- Reduce the amount of data you read
 - Must scale sub-linearly with the size of the grid
- Subzone Load-on-Demand (SZL)
 - Save indexed data file
 - Load only the data you need (Lazy Loading)



SZL Technology: How SZL Works

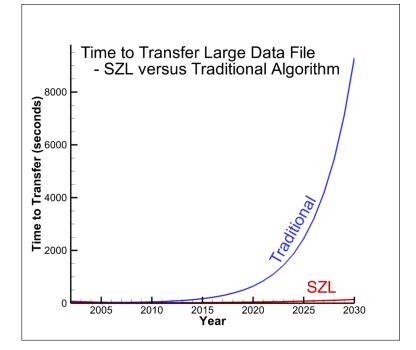
Example 2D contour line


- Current methods require loading data for zone
- For large data loading can be time intensive

Domain can be indexed

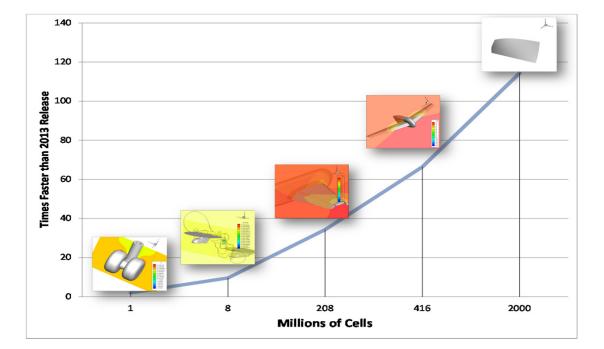
- Decomposition of domain into smaller subdomains
- These subdomains can be indexed

Data required for line is 5/16 of total data

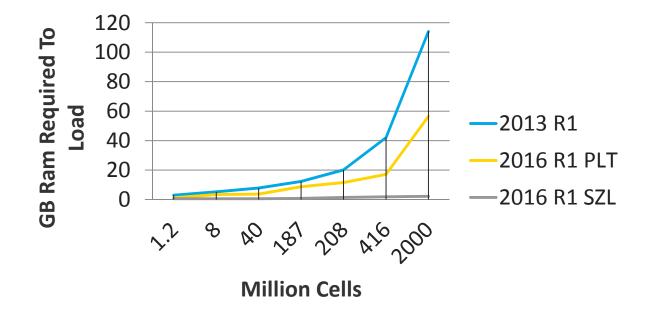

- Loading time reduced
- Memory requirements reduced

SZL Technology: Performance Improvements

- Amount of data used is dramatically less with SZL
 - SZL advantage grows exponentially with time
- Transfer time grows much slower than before

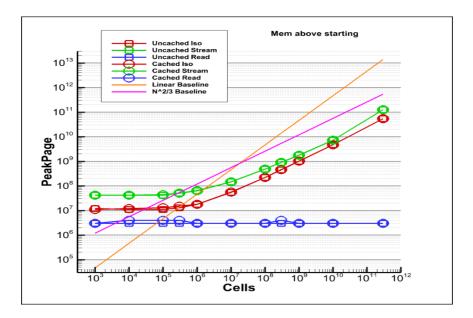


SZL Technology: Performance Improvements


10

- 100% of the test show improved performance with SZL
- Results vary depending on specific data set, but all but the smallest test showed >10x speedups (FE data)

SZL Technology: Memory Reduction


Memory reduction is what makes the impossible possible. With SZL you can load extremely large solutions on machines with limited memory.

SZL Technology: Trillion Cell Challenge

- Achieved our goal of visualizing one-trillion cells in 2015
- Scaling is as predicted
- Note: it took 3.5 days to write the 8.5TB file

12

SZL Technology:

In-Situ Visualization/Post-Processing

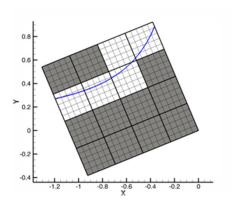
- In-Situ: (post-processing) performed in place (in the CFD code)
 - Sometimes the post-processing is done on other nodes of the HPC system
- Desired Results:
 - Dramatically reduce the size of data written to disk (overcome the I/O bottleneck when writing).
 - Minimally impact the performance of the CFD code (CPU cycles and memory)
 - Maximize "explore-ability" of In Situ output file

13

SZL Technology: Traditional In-Situ

- Extract features such as slices and iso-surfaces as surface data and save to file
 - Requires significant resources (CPU cycles and code space) to extract features
 - Sometimes the surface data is rendered to create an image (more processing, less data written)
 - If you made a mistake, must rerun (restart) CFD code

14



SZL Technology: Subzone Based In-Situ

- Write out only the volume subzones needed for desired features
- Select subzones you write based on a query
- Example queries:
 - Q-Criteria for Overset grids: (Q>0.0 AND IBlank = 1)

15

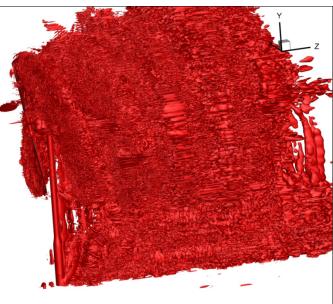
Cp isosurface and an x-slice: (Cp = -1 OR X=100)

SZL Technology: Comparison of Subzone Based and Traditional In-Situ

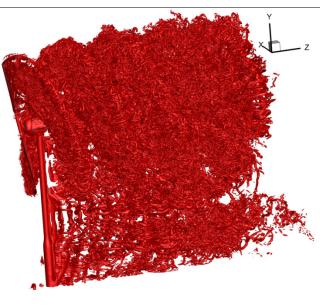
Desired Characteristics	Subzone-Based	Traditional
Minimize File Size	Larger (3x to 4x)	Smaller
Minimal HPC processing	Less	More
Post-write Exploration	Yes (some)	Less (view changes)
Post-write field derivatives	Yes	No

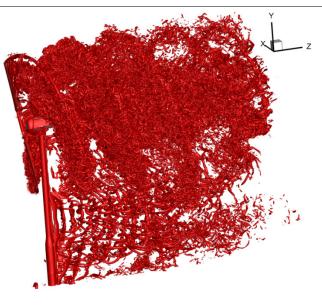
16

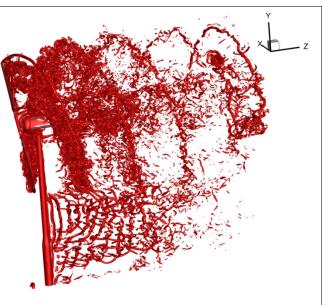
SZL Technology: Results: Wind-Turbine LES


- OVERFLOW 2.2
 - OVERFLOW-D mode
 - Domain Connectivity Function (DCF)
 - Geometry Manipulation Protocol (GMP)
 - 16 near-body blocks (2.6M points)
 - Adaptive Mesh Refinement
 - 2nd-order differencing near-body
 - 4th-order differencing off-body
- Results
 - 10 m/s aligned with turbine
 - time step = 7152, 260M nodes in 5600
 blocks

17


- Example: Q-Criteria for LES of wind-turbine wake
- Q=0.0
- Too much

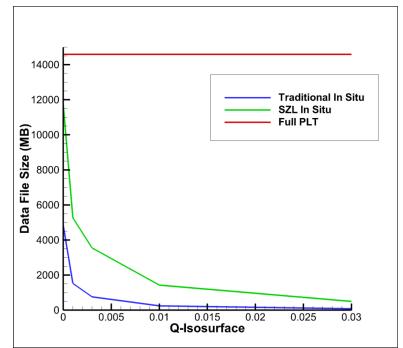

- Example: Q-Criteria for LES of wind-turbine wake
- Q=0.001
- Better


- Example: Q-Criteria for LES of wind-turbine wake
- Q=0.003
- Good

- Example: Q-Criteria for LES of wind-turbine wake
- Q=0.01
- Good (sparse)

- Example: Q-Criteria for LES of wind-turbine wake
- Q=0.03
- Too sparse

- Example: Q-Criteria for LES of wind-turbine wake
- Rather than creating five separate In Situ Iso-surface extractions, with Subzone Based In Situ you can
 - Specify a range of Q to include in the file (say 0.003 to 0.03)
 - Interactively explore the data to find the best value of Q.
 - Probably between 0.003 and 0.01



SZL Technology: Results: Wind-Turbine LES

- File Size (chart)
 - SZL In Situ files are 3x to 5x larger than traditional files
 - SZL In Situ files are much smaller than full SZL file
- Iso-surface details
 - For Q=0.01, 6.6M triangles and 3.4M points

24

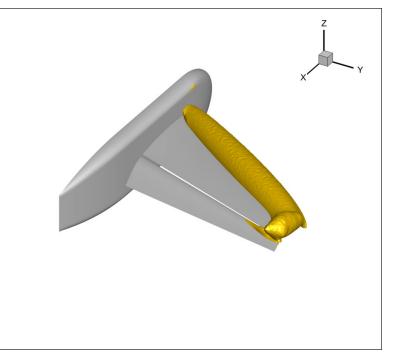
- Load Times and Memory (For Q=0.01)
 - SZL: 70.8 sec and 5.2 GB
 - SZL In Situ: 11.8 sec and 3.5 GB

SZL Technology: Results: NASA Trapezoidal Wing

- Geometry (High-Lift Prediction Workshop)
 - Trapezoidal wing with flaps and slats extended

25

- Half body and mirrored to create full body
- Grid
 - Finite-element (Bricks, Tets, Prisms)
 - Half: 204 Million Cells
- Solution
 - File 12.9GB

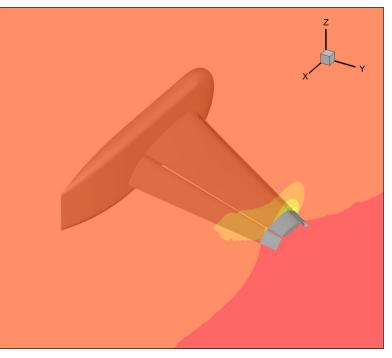


SZL Technology:

Results: NASA Trap Wing Iso-surface

26

- File Sizes
 - PLT: 9.48 GB
 - SZL: 5.92 GB (node-map compression)
 - SZL In Situ: 0.64 GB (10.8% of full SZL)
 - Just Isosurf: 0.083 GB
- Load Times & Memory
 - PLT: 98 sec and 16.5 GB memory
 - SZL: 30.3 sec and 2.4 GB memory
 - SZL In Situ: 9.4 sec and 1.9 GB memory



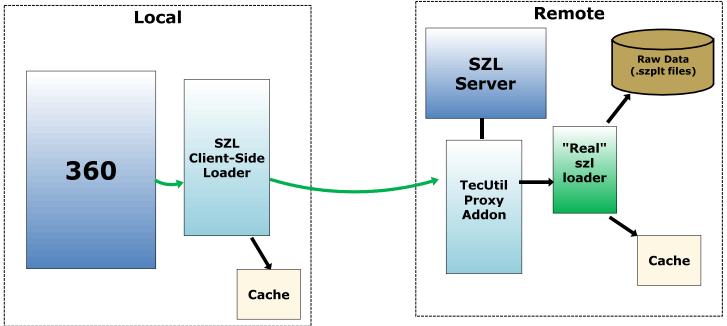
SZL Technology: Results: NASA Trap Wing Slice

27

- File Sizes
 - PLT: 9.48 GB
 - SZL: 5.92 GB (node-map compression)
 - SZL In Situ: 0.075 GB (1.3% of full SZL)
 - Just Isosurf: 0.008 GB
- Load Times & Memory
 - PLT: 97 sec and 16.5 GB memory
 - SZL: 8.5 sec and 0.47 GB memory
 - SZL In Situ: 1.6 sec and 0.4 GB memory

Summary:

Subzone-Based In-Situ:


- File Size
 - Much smaller than full SZL file
 - Bigger than traditional In-Situ
- Requires little processing on the HPC
- Allows post-write explorations and processing (derivatives)
- Loading Subzone In-Situ files into Tecplot
 - Faster and uses less memory than SZL

28

• Much Faster and uses much less memory than PLT

SZL Technology: Subzone-Based Client-Server

Serves subzones instead of surfaces

Future Development

- In-Situ is currently proof of concept, need to complete
 - Add In-Situ queries to TeclO
 - Optimize write performance

SZL Technology:

www.tecplot.com