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% Introduction

Blade mesh i

[Main background mesh|

Vortex Tracking

| Grids (VTG System of overset meshes|

WA A

Flow in hover (Source: Helios) Overset Cartesian Mesh (highlighting VTGs)
* Unsteady flow physics around complex configurations

* Multiple mesh system using overset technique
— Unstructured grids for near-body region
— Structured Cartesian grids for off-body region
 Heterogenous computing
— Flow feature resolution can result in increases mesh sizes (e.g., AMR, VTG)

— Use of CPUs and GPUs to reduce computational time
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% Introduction

AT

Blade mesh g

[Main background mesh}

Vortex Tracking
| Grids (VTG

System of overset meshes

Flow in hover (Source: Helios) Overset Cartesian Mesh

* Structured grids solution methods
— Stencil based discretization resulting in line-based implicit operator and solution schemes
“High-order type” numerical schemes are mature
— Difficult to create for arbitrary geometries
* Unstructured meshes provide versatility for complex geometries
— High-order difficult and expensive within a finite volume framework

— Generally slower than their structured counterparts
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& Previous Work

* Finding structures in unstructured grids

— Hassan et al. (1989) and Martins and Lohner (1993): Abandoned because finding

lines in pure unstructured grids was difficult and not robust (NP problem)
— Mavriplis (1997): Line-implicit inversion in wall-normal direction
— Meakin (2007), Wissink (2009), Katz (2011), Lakshminarayan (2016): Strand grids
« Paths in pure unstructured grids

— Sitaraman and Roget (2014): Hamiltonian paths in 2D
— Govindarajan et al. (2015) and Jung et al. (2016): Hamiltonian paths/ strand grids
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GPU Computing

Theoretical GB/s

Theoretical GFLOP/s
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GPUs can provide much higher computing performance than CPUs
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& Previous Work

* GPU accelerated solvers
— Soni, Chandar and Sitaraman (2012): Incompressible NS solver with overset
— Khajeh-Saeed and Perot (2013): Direct Numerical Solution

— Chan et al. (2016): GPU accelerated Discontinuous-Galerkin

— Sebastian and Baeder (2013), Jude and Baeder (2016): GPU RANS
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Formulate a line-based solver that is independent of mesh topology

Take advantage of the computing capabilities of GPUs

Validate for practical aerodynamics flows within an overset framework
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5 Outline

* Methodology

— HAMSTR: Line methods on unstructured grids
— GARFIELD: GPU Accelerated solver on structured grids

— TIOGA: Topology independent overset techniqug

— Flow solvers ” - PR
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HAMSTR Capabilities

HAMSTR: Hamiltonian-Strand

e Line-based solver on unstructured grids
e Three-dimensional Navier—Stokes solver
e Viscous and turbulence models (£ e ——
SEal SRR I
ii 7 -\‘:,,"’I,',I[,,l[,'g' X \
& LI %
LIRSS 7 ll.. g?}szi‘é{;‘ézzé?es &
e Overset framework S, SISIIEE
e iy e SRR
RS LA
Grid lati h oth SSSRRRERNS
» Grids move relative to each other NS
AT T
\t\“:\‘\‘\‘\‘““\““‘: ------------
W ane==
1 1 A BTk,
e Parallelized using MPI = RN
ReReR
o
. RIS X
e Start from mixed-element surface mesh s
RS
Loops through the it
) naasatal
Integrated through Python drface gics. | e

TRNAEARABARE

Developed under Air Vehicles element of the HPCMP CREATE program through PETTT grant (2014—2016)
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- Begin with original unstructured mesh
R‘ e\ % ,’ - Subdivide triangles and quadrilaterals
A’ S~
\ -7 I s - Choose any “available” face and link
S /! \ s to opposite face of the cell
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The coloured loops are Hamiltonian paths
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% Strand Grids

TRYLAS

- Strands grids are employed to extend the formulation to three-dimensions

- Formed by extruding the surface mesh in wall normal direction

- Volume domain formed by “stacking” multiple Hamiltonian path layers

- Layers are connected with strands and forms the third spatial cell coordinate
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(e GARFIELD Capabilities

GARFIELD: GPU Accelerated Rotor Flow Field Solver

e GPU accelerated

 Line-Solver on curvilinear grids

» Three-dimensional Navier—Stokes solver
e Viscous and turbulence models

e Overset framework

* Parallelized across multiple GPUs using MPI
e Coupled to a free-vortex method

e Integrated through Python

GPU 2
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5 RANS on GPUs
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% Overset Connectivity

TIOGA*: Topology Independent Overset Grid Assembler

e Developed by Jay Sitaraman
o Identify field, donor, receptor and holes

e Mixed element unstructured meshes

e Implicit hole cutting strategy

L3 L3 L3 S
e Alternating Digital Tree for fast search — e
5 st
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e Integrated through Python < > SIS SIS IR o oSS
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SIS

*Brazell, M. J., Sitaraman, J., and Mavriplis, D. J., “An Overset Mesh Approach for 3D Mixed Element High-
Order Discretization,” Journal of Computational Physics, Vol. 322, pp. 33—51, 2016.
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Framework Integration

/ \ Structured 0-0 grid
HAMSTR for rotor blade

» Based on CPU Parallelized across
multiple processors using MPI

 Solves along loops and strands in a
manner similar to a structured grid

» Wrapped using Python (SWIG)

\ J
4 TIOGA )

* Identifies the iblank arrays and
interpolation weights

* Interface code written in C/C++

» Compiled into a library

* Accessible in Python

- /
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Unstructured surface mesh
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* Based on Graphic processors units :
(GPU) using CUDA interface : :
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Strands can cross

parallelized across multiple Near body : jSsss
processors using MPI HAWSIE mesh Transition to
* Structured grid based flow solver b background mesh
&Wrapped using Python (Boost) / R ns o s sssssasssssssssnsaasisss s i iecksBitns:
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oS Governing Equations

'71(y_\,P\

- 3D compressible Navier-Stokes formulation (Finite volume)

XLV [P~ Fv). (Ge — Gy), (Ho — Hy) =0

- Inviscid reconstruction can use standard line-methods
(e.g., MUSCL, WENO, CRWENO)

- Implicit line-operators for factorization

« HAMSTR: Diagonally Dominant Line Gauss Seidel (DDLGS)
o GARFIELD: Diagonalized Alternating Direction Implicit (DADI)

HAMSTR: “loops” equivalent to

- 2™ order accurate in time using BDF o _
traditional lines

- Interface fluxes computed using Roe’s scheme

- Viscous terms using 2" order central difference

- Spalart—Allmaras turbulence model for Eddy viscosity --f--

GARFIELD: conventional lines

Solver formulation for both HAMSTR and GARFIELD very similar to structured grid solvers
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% Three-Element Airfoil
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Three-Element Airfoil

HAMSTR

No. cells: 107,063
M=0.2

AoA = 4°

Re = 9 million
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HAMSTR

No. cells: 107,063
M=0.2

AoA = 4°

Re = 9 million
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HAMSTR

No. cells: 107,063
M=0.2

AoA = 4°

Re = 9 million

6 Experimenf
HAMSTR |

Streamlines on velocity contour
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e M =0.8, AoA 1.25, Inviscid transonic flow
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e M =0.8, AoA 1.25, Inviscid transonic flow

e Formally currently only second-order accurate

18 October 2016 Overset Grid Symposium



RHO

HAMSTR
e

» - 11,700 quadrilateral cells

| 079
B o075

Sy f i - dtof 0.2 with 10 sub iterations
S - | Compare with DG (BDF2, p = 4)
S - High-order type reconstruction

Grid and initial density contours can be beneficial
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1
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. Reference < 0.2k MUSCL
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X Nondimensional time (t)
Density profile across vortex core Reconstruction schemes

Wang, L., and Mavriplis, D. J., “Implicit Solution of the Unsteady Euler Equations for High-Order Accurate Discontinuous Galerkin
Discretizations,” Journal of Computational Physics, Vol. 225, No. 2, August, 2007

18 October 2016 Overset Grid Symposium




) Scalability
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1 GPU on GARFIELD ~ 18 cores on OVERFLOW

Reasonable performance on multiple cores using both solvers (using MPI)
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Fringe
layers altered

Hole inside
other sphere
recognized

- Field cells - Fringe cells D Hole cells
i-blanking map of top sphere

Flow altered
between the
spheres

/ *The white spaces are plotting artifacts

L [ L

| _MACH: 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Mach contour lines

- Separation distance between the two spheres is 1.5 diameter of the sphere

- Mach number 0.2, Reynolds number of 100 at 0° angle of attack

- 15,360 surface quadrilaterals, 0.01R wall-spacing with 34 strands

- Velocity increment is observed by venturi effect between two spheres

18 October 2016
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G Overset Dual Spheres

HAMSTR

o ——=—— Far surface M 10°
o 1 — —e— - Near surface -%
< HAMSTR £
] o
S 3 100
p= — HAMSTR
g A\ @ e -
8 os}) g N
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D 05 £ 10"k
c 05
s 2
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Angle(degree) Number of iterations
Surface pressure distribution Residual convergence

- Good agreement against reference results (numerical study)

- The solution converges to machine precision around 3,500 iterations.

Kim, I., Elghobashi, S., and Siriganano, W. A., “Three-Dimensional Flow over Two Spheres Placed Side by Side,” Journal of Fluid Mechanics,
Vol. 246, (1), 1993, pp. 465-488.
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% Hovering Rotor

) VA
TRYLAS

HAMSTR
A
Wall-normal

4R strands

v
Quad
main body
oR Triangular
tip-cap
v
" 3R g Overset system Near-body strand mesh

— Untwisted, NACA 0012 blade of aspect ratio 6 at 8° collective, M:p 0.877
— Mixed element surface mesh: 54 strands, wall spacing 10, stretching 1.2
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Hovering Rotor

Collective: 8°
Mach tip: 0.877
Re tip: 3.93 x 10¢
timestep 1°

Sub iterations 10

5th order reconstruction
better preserves the
vortical structure for
longer wake-ages
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3rd order MUSCL reconstruction

Overset Grid Symposium

5th order WENO reconstruction



% Hovering Rotor
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Good correlation with experimental pressure and good sub-iterative convergence
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Retreating side
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Side-sectional view
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Miip = 0.7 Collective = 8°, Minr=0.2 (p=0.28), Re = 3.93 million
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HAMSTR

Advancing side

100 300 500 700 900 1100

Shock induced vorticity
(Flood: Eddy viscosity, Line: pressure)

Iso-Vorticity contour
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S Turbulent Flow over Stub-Wing
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Pressure Coefficient: -4 -35 -3 -25 -2 -1.5

|

4 05 0 05

GARFIELD

NACA 0015 stub-wing with
rounded tip cap

120 angle of attack

2.6 x 10° points
Reasonable pressure
distribution compared to
experiments

Tip-vortex well resolved
Good agreement in

g pressure with overflow

Overflow had a
much coarser
mesh at the tip!
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Swirl velocity profiles at various downstream locations
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% Laminar Sphere

VS
TRYLAS

7
Hamstr SEEsEmas:
- Unstructured sphere A0 ‘\*‘ i :
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- 25 CPUs E
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18 October 2016 Overset Grid Symposium



Vorticity Magnitude: 0.10.30.50.70.91.11.31.51.71.9

- Laminar flow at Re=800
- With nested overset mesh, vortices are better captured and preserved
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Onera M6 Mesh
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% Onera M6 Solution
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e Outline

* Conclusions
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% Conclusions

- Line-based solvers used for both structured and unstructured meshes
- Hamiltonian paths and strand grids used for unstructured grids

- Conventional lines used for curvilinear grids

- Enables the use of high-order type reconstruction schemes (e.g., MUSCL, WENO)
and line-based inversion techniques

- Hardware acceleration through Graphics Processing Units
- RANS equations solved entirely on multiple GPUs using MPI
- Reasonable scalability with some penalty for information exchange across nodes

- Python based framework developed for practical aerodynamic flows
- Allows for the most optimum solver to be used for a given grid topology
- Demonstrated capability of the solvers over a wide range of cases
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