A General Purpose, Open-Source Overset Library for Caelus based on Suggar++

Dr. Chris Sideroff
Dr. Darrin Stephens
Overset with OpenFOAM

- Previous library/solver efforts:
 - foamedOver (Boger et al, PSU-ARL)
 - naoeFOAM-os-SJTU (Shen et al, Shanghai Jiao Tong University)
 - Others?

- Previous OGA efforts:
 - OperaFOAM (Chandar et al IHPC Singapore)
 - Bellerophon (Groß, Univ. of Rostock)
 - Others?

- None have been publicly released or available for purchase (to our knowledge)
Caelus (OpenFOAM derivative) is a collection of libraries.

Goals:
- Hide overset-specific details
- Minimal changes to existing library and top-level applications
- Use existing linear solvers
- Minimal changes to existing workflow
- Use Suggar++ for OGA

Features
- Static, prescribed and dynamic motions
- 6-DoF ODE solver with constraints, restraints and loads
- No restriction on parallel decomposition
- Static/dynamic, single-phase/VOF solvers
Implementation

- oversetFvMesh: derived from fvMesh class
- Important because (almost) all existing top-level functionality uses fvMesh
 - Inherits all non-overset functionality
 - Handle overset specific duties with virtual and overloaded functions

```cpp
class oversetFvMesh : public fvMesh
{
    ...
}
```
Low Level Changes

• Few changes required to main Caelus library to support oversetFvMesh library. E.g.
 • Dummy equation and matrix manipulation functions for non-overset
 • Small matrix support for 6 DoF ODE functionality
 • Find functions for mesh primitives required virtualization

```
primitiveMesh
   ↓
polyMesh
   ↓
fvMesh
   ↓
oversetFvMesh
```
Implementation

- Manipulate matrix and field values of fringe cells
- Templated matrix (momentum, pressure) and field (volume fraction) update functions
- Calls DiRTlib and libSuggar++ to update fringe

```cpp
fvVectorMatrix Ueqn
(
    fvm::ddt(U) +
    fvm::div(phi, U) -
    fvm::laplacian(nu, U)
    ==
    - fvc::grad(p)
);```

• Manipulate matrix and field values of fringe cells
• Templated matrix (momentum, pressure) and field (volume fraction) update functions
• Calls DiRTlib and libSuggar++ to update fringe

```cpp
// Update matrix implicitly
mesh.updateFvMatrix<vector>(UEqn);
UEqn.solve();

// Update matrix implicitly
mesh.updateFvMatrix<vector>(UEqn);

// Update field value explicitly
mesh.updateFvField<scalar>(alphal);
```
Usual Workflow

1. Generate Mesh
2. Setup Case (BCs, etc)
3. Solve Eqns
4. Post Process

- Assemble Matrix
- Solve Matrix
Overset Workflow

1. Run Suggar++
2. DCI / libSuggar++
3. Generate Mesh
4. Setup Case (BCs, etc)
5. Solve Eqns
6. Assemble Matrix
7. Solve Matrix
8. Post Process
9. Modify Matrix
Case Structure

0
  ├── U
  │ ├── p
  │ ├── k
  │ ├── omega
  │ └── nut
  └── 1
    └── polyMesh
      └── uniform
        └── sixDoFRigidBodyState

constant
  └── polyMesh

suggar
  └── DCI
    └── Grids
      └── background
      └── sphere

Input
  └── Work

system
  ├── controlDict
  │ └── fvSchemes
  └── fvSolution

FoamFile
{
  version 2.0;
  format ascii;
  class dictionary;
  location "0/uniform";
  object sixDoFRigidBodyState;
}

centreOfRotation ( 4.099396 0 1.650153 );
principalOrientation ( 1 0 0 0 1 0 0 0 1 );
velocity ( 1.0e+01 0.0 0.0 );
acceleration ( 0.0 0.0 0.0 );
angularMomentum ( 0.0 0.0 0.0 );
torque ( 0.0 0.0 0.0 );
Features

• Suggar++ for OGA:
  • DCI files (DiRTlib)
  • DCI files or in memory (libSuggar++)

• Static (DiRTlib)

• Prescribed
  • Single body, rotation or translation (DiRTlib)
  • Multi body, more complex prescribed motions (libSuggar++)

• Dynamic
  • Multi body
  • Hierarchical body arrangement (mimics Suggar++ input)
  • 6 degree of freedom solver (w/ constraints, restraints, loads)
Orphan Points

• LSQ nearest neighbor averaging
• “Neighborhood” user selectable: radius and levels
• Remediation fully parallel
• Same approach used for changing iblank (dynamic)

```c
oversetFvMeshCoeffs
{
 DiRTlibNumberOfVariables 3;
 dciFilePrefix "output";
 searchRadiusFactor 3.4;
 maxCellCellRows 4;
 nOrphanIterations 50;
 tolOrphanIterations 0.05;
 ...
}
```
libSuggar++

- More complex prescribed and dynamic motions need libSuggar++

```plaintext
oversetFvMeshCoeffs
{
...
 writeComponentCellSets false;
 writeDynBodiesCellSets false;
 useLibSuggar++ true;

 // Only libSuggar++
 DCIMemoryTransfer true;
 nSuggarRanks 1;
 motionMemoryTransfer true;
 motionFileOutput true;
 motionOutputDCIFile false;
}
```
6 Degrees of Freedom

• Available integrators
  • Symplectic
  • Newmark
  • Crank-Nicholson
• Constraints: point, axis, line, plane, orientation
• Restraints: linear spring, linear and angular damper
• Loads: external force and moment
• Selectable gravity, buoyancy and hydrodynamic forces
Body Hierarchy

- No limit on number of bodies or levels
- Only limit: no 6DoF-in-6DoF

```plaintext
multiOversetBodyMotionFvMeshCoeffs
{
 helicopter
 {
 oversetBodyMotionFunction linearMotion;
 linearMotionCoeffs
 {

 }
 }
 main-rotor
 {
 oversetBodyMotionFunction rotatingMotion;
 rotatingMotionCoeffs
 {

 }
 }
 blade1
 {
 oversetBodyMotionFunction oscillatingRotatingMotion;
 oscillatingRotatingMotionCoeffs
 {

 }
 }
}
```
Parallel

• Solver
  • Usual decomposition methods available
  • No restriction on how or where mesh is decomposed
• Overset (libSuggar++) currently runs in parallel on solver ranks
  • No MPI_COMM splitting (yet)
  • No DC groups (yet)
Solvers

• Will initially provide:
  • Single phase: static and dynamic
  • Multi-phase (VOF): static and dynamic
• Adding solvers “should” be trivial
Utilities

- Move component grids with:
  - Prescribed motion (DCI files)
  - motion.xml
- Create overset data: iblank, component ids
- Compute mass and moment of inertial properties of bodies
Static Validation
6 DoF Validation
Availability

- Yes
- Open-source but not free (as in beer)
Caelus is a derivative of OpenFOAM

- Open and free (as in beer): [www.caelus-cml.com](http://www.caelus-cml.com)
- Supports multiple platforms (Windows, Linux and Mac)
- Robust compilation: Scons
- Easy to install
- **Verified** schemes and **Validated** solvers and turbulence models
- Documentation and validation cases
- Improved algorithmic robustness on non-”perfect” meshes
- Improved accuracy on non-”perfect” meshes
- Swak, Python wrapping, etc
- New compressible solvers and turbulence models
- New VLES turbulence model class
- Stable, predictable API
What is Caelus?

Documentation and validation cases

Easy installation with minimal dependencies (Python and MPI)
What we do

- Specialise in the application, support and development of open source computational mechanics
- Provides customer value by conducting industry-relevant TRL 2-6 R&D
- Engage with customers as their technology partner
Technology Summary

• Solvers
  • Highly efficient incompressible/compressible fractional-step solvers (AIAA Scitech 2015)
• Combustion
  • Arrhenius finite-rate chemistry models (GTP 2015)
  • Thermo-acoustic instability solvers (JPP 2015)
• Sensitivity, Optimization and Uncertainty (SOU)
  • Adjoint (SAE 2014)
  • Tangent
  • Uncertainty and error propagation
• Turbulence modelling
  • VLES (APISAT 2015)
• Acoustics solvers (JPP 2015)
  • Linearized Euler
  • Linearized Perturbed Compressible Equations (LPCE)
• Overset
Current Research Projects

• Multi-scale multiphase solver
• Employ adjoint, tangent, polynomial chaos to:
  • Optimize for acoustic phenomena
  • Investigate uncertainty and error propagation of turbulence parameters
    and quantities (e.g. empirical coefficients)
• Automated vertically integrated CFD workflows:
  • Meshing → Solving → Post-pro → SOU → Meshing …
• Development of generic overset framework (solver agnostic) to enable:
  • Higher quality meshes
  • Multiple, nested dynamic body motions
Semi Linear Implicit Method - SLIM

- Fast, low dissipation fractional step solver based on projection method
- Significantly better scalability than traditional implicit transient solvers

*Industrial parallel performance study of 50 million cell ABL simulation*
Adjoint

- Time-symmetry preserving semi-discrete surface adjoint:
  - Provides both direction and magnitude
- Tested on meshes up to 60M cells without limitation
- Used to redesign front air dam on V8 supercar
VLES: Hybrid RANS/DES Turbulence Model

- Use resolution function, $F_r$, off body to blend RANS and LES

Rear wheel pressure coefficient

Rudimentary Landing Gear, AIAA Aeroacoustics Workshop
Who we are

Darrin Stephens has an extensive background in modeling a range of complex reacting multiphase flows and led the development of CFD models for a number of industrial unit processes allowing redesign and optimization, improving throughput and efficiencies. He is the managing director and principle research engineer at Applied CCM Pty Ltd., a company providing development, technical support and training for open source CFD software such as Caelus and OpenFOAM. His professional interests include multi-phase algorithms, optimization algorithms, population balance modeling, coupled solvers and the development of next-generation hybrid and multi-physics models. He earned his Ph.D. degrees in mechanical engineering from James Cook University in Townsville, Australia.

Chris Sideroff is the managing director and principle research engineer at Applied CCM Canada, a company providing development, technical support and training for open source based CFD software such as Caelus and OpenFOAM. His current research interests are automation methods for mesh generation, more robust discretization schemes for highly anisotropic and skewed meshes for finite volume based CFD solvers, work flow automation (pre, solve, post) with interpreted programming languages such as Python, and overset grid technologies. He earned his Ph.D. degree in mechanical and aerospace engineering from Syracuse University in Syracuse, USA.

Aleks Jemcov has 20 years of experience in computational fluid dynamics and turbomachinery related flows. His research interests include development of numerical algorithms for fluid mechanics, solid-fluid interactions, efficient solver methodologies applicable to both compressible and incompressible flows, thermo-acoustics, turbulence modeling, and linear algebra. Prior experience includes work in the Combustion Dept. at Pratt & Whitney Canada, Development Dept. at Fluent Inc., and the Development Department and Fluids Business Unit at ANSYS, Inc. He currently serves as Associate Director for Computational Sciences at the Notre Dame Turbomachinery Laboratory and is a Research Assistant Professor in the Aerospace and Mechanical Engineering Department at the University of Notre Dame. He earned his Ph.D. in Aerospace Engineering from the University of Belgrade.
Questions

Applied CCM Inc
Dr Chris Sideroff
Phone: +1 613 276 7472
Email: c.sideroff@appliedccm.ca
Web: www.appliedccm.com

Applied CCM Pty Ltd
Dr Darrin Stephens
Phone: +61 03 8376 6962
Email: d.stephens@appliedccm.com.au
Web: www.appliedccm.com

www.caelus-cml.com